Statistically significant contrasts between EMG waveforms revealed using wavelet-based functional ANOVA
J. Lucas McKay, Torrence D. J. Welch, Brani Vidakovic and Lena H. Ting
doi: 10.1152/jn.00447.2012

You might find this additional info useful...

This article cites 32 articles, 10 of which you can access for free at:
http://jn.physiology.org/content/109/2/591.full#ref-list-1

Updated information and services including high resolution figures, can be found at:
http://jn.physiology.org/content/109/2/591.full

Additional material and information about Journal of Neurophysiology can be found at:
http://www.the-aps.org/publications/jn

This information is current as of January 15, 2013.
Statistically significant contrasts between EMG waveforms revealed using wavelet-based functional ANOVA

J. Lucas McKay, Torrence D. J. Welch, Brani Vidakovic, and Lena H. Ting

The Wallace H. Coulter Department of Biomedical Engineering, Emory University and the Georgia Institute of Technology, Atlanta, Georgia

Submitted 28 May 2012; accepted in final form 20 October 2012

WE OFTEN WANT TO COMPARE the shapes of waveforms that are functions of time, but traditional statistical methods cannot reveal differences between curves without sacrificing temporal resolution or power. Certain features of the waveforms that are clearly identifiable based on visual inspection may not be revealed by traditional statistical tests such as \(t \) tests or ANOVA applied across time points due to the large number of comparisons (Fig. 1A; Abramovich et al. 2004; Fan and Lin 1998). For example, many studies present clear differences in mean waveforms across conditions in electromyograms (EMGs; Hiebert et al. 1994), H-reflex responses (Frigon 2004), kinematics (Ivanenko et al. 2005), and neural firing rates (Mushiake et al. 1991), but statistical tests are often not performed or reported due to low power. A common approach to overcome this problem is to apply statistical analyses to mean values over a time bin of interest (Frigon 2004; Welch and Ting 2009). However, this approach sacrifices the temporal resolution of the interesting feature by approximating it as a single data point. To address this undesirable trade-off between temporal resolution and statistical power, we propose performing statistical inference outside of the time domain.

The wavelet transform is a versatile tool for the analysis of waveforms with time-varying frequency content because it reveals not only the different frequency components of the waveform, but also the temporal structure of those components. Because of its power to describe signals containing events throughout the range of time-frequency localization, the wavelet transform has been used in many biomedical applications, including analysis of electroencephalogram and electrocardiogram signals and processing for positron emission tomography and MRI (see Unser and Aldroubi 1996 for a review). Like the Fourier transform, the wavelet transform decomposes the signal of interest into orthogonal basis functions with different frequency characteristics that additively represent the original signal. In contrast to the Fourier transform, the basis functions used in the wavelet transform are temporally localized. This property allows the representation of both frequency and temporal information within the transformed signal and provides a particularly rich description of biomedical signals, which often have nonstationary frequency composition and burstlike temporal structure (Cohen and Kovacevic 1996).

Previously, the wavelet transform has been used to identify features of EMG signals, but it has not been used for statistical comparison of EMG waveform across conditions (Cohen and Kovacevic 1996; Unser and Aldroubi 1996). For example, the wavelet transform has been used to quantify automatically the timing of bursts within EMG signals in a manner similar to template matching (Flanders 2002). Wavelet packets have also been used to quantify the temporal location and width of unit bursts in EMG signals (Hart and Giszter 2004) as well as for extraction and classification of motor unit action potentials from EMG records (Fang et al. 1999; Ostlund et al. 2006; Ren et al. 2006). Wavelet analyses have also been used to estimate latent information within EMG signals. For example, time-dependent power spectra (Huber et al. 2011; von Tscharner 2000; Wakeling and Horn 2009) as well as changes in these spectra, for example, with fatigue (Kumar et al. 2003), have been estimated to offer information about underlying muscle fiber conduction velocity (Stulen and De Luca 1981). How-
ever, to our knowledge, the wavelet transform has not been previously applied in the context of hypothesis testing for comparison of waveform shapes (Unser and Aldroubi 1996).

Here, we leveraged the beneficial properties of the wavelet transform to develop a generalized technique called wavelet-based functional ANOVA (wfANOVA) to compare statistically the shapes of waveforms that are functions of time without sacrificing temporal resolution or statistical power. Our method is related to functional data analysis (Ramsay and Silverman 2005) because each wavelet is a function of time rather than a single time point. When expressed in the wavelet domain, temporally localized waveform features tend to be well-represented by a few wavelets rather than by many correlated time samples (Fig. 1B) or by many independent sinusoids as in Fourier analysis. Therefore, applying statistical tests to wavelet coefficients reduces the number of statistical tests required while retaining statistical power (Angelini and Vidakovic 2003). In contrast to many wavelet-domain techniques that have been applied to EMG data, wfANOVA does not use information about the wavelet coefficients themselves to suppose possible physiological mechanisms that may have generated the EMG signals (e.g., subpopulations of motor units or muscle fiber types). Rather, wavelets are used only as basis functions that correspond to these localized time differences that are easily identifiable by eye. The unique and generalizable attribute of wfANOVA is the reconstruction of the wavelets into the time domain after performing functional analyses to allow the visualization of the effects of experimental manipulation as contrast curves in the time domain (Fig. 1B) rather than reporting these effects in the wavelet domain.

As proof of principle, we applied wfANOVA to previously published EMG data to demonstrate its ability as a general method for determining differences in the time courses of waveforms. We first compared the ability of wfANOVA and time-point ANOVA (tANOVA) to identify contrast curves in previously published EMG waveforms in response to perturbations during standing balance (Welch and Ting 2009) without picking time windows a priori. Previously, ANOVA was performed on mean values of EMG calculated during fixed time bins, demonstrating that peak perturbation acceleration alters the magnitude of early periods of EMG, whereas peak perturbation velocity affects later periods (Welch and Ting 2009; Fig. 2). Here, we perform a reanalysis of these data to test whether the effects of perturbation peak acceleration and peak velocity can be visualized as continuous contrast curves without relying on time windows chosen by the experimenter. Finally, we compared the ability of wfANOVA and tANOVA to identify known contrast curves in simulated EMG data with noise characteristics similar to those of recorded EMG data but with known temporal structure.

METHODS

EMG data. The experimental protocol was approved by the Institutional Review Boards of Emory University and Georgia Institute of Technology. We applied wfANOVA and tANOVA to previously published EMG waveforms recorded during postural perturbations elicited by translating the support surface forward or backward in the horizontal plane. Detailed experimental methods are presented in an earlier paper (Welch and Ting 2009). Briefly, 7 healthy subjects [2 female, 5 male, mean age 19.4 ± 1.4 yr (mean ± SD)] stood on a moveable platform that translated in the horizontal plane. Subjects...
withstood translation perturbations of the support surface that were designed so that platform peak acceleration and peak velocity could be varied independently. Perturbations were delivered with peak velocities of 25, 30, 35, and 40 cm/s and peak accelerations of 0.2, 0.3, and 0.4 g. Although additional peak acceleration levels were administered to subjects, only the acceleration levels for which all levels of velocity could be achieved with the experimental apparatus were considered for further analysis in a balanced ANOVA design. Conditions were randomized, and each subject was nominally exposed to each of the conditions 5 times, although in some cases trials were repeated or sessions ended early due to fatigue. We used all available trials for each of the 7 subjects, resulting in 33–38 trials in each of the 12 conditions (Table 1). We were particularly interested in the ability of wANOVA and tANOVA to identify variation in EMG waveforms with perturbation characteristics within two 150-ms time bins referred to as the initial burst (IB) and plateau region (PR), respectively, beginning 100 ms after perturbation onset (Fig. 2).

EMG was collected during each trial, processed, and registered to the onset of perturbation acceleration. We examined the activity of ankle dorsiflexor tibialis anterior (TA) during forward perturbations and ankle plantarflexor medial gastrocnemius (MG) during backward perturbations. Raw EMG signals were collected at 1,080 Hz, high-pass filtered at 35 Hz (3rd-order 0-lag Butterworth filter), demeaned, rectified, and low-pass filtered at 40 Hz (1st-order 0-lag Butterworth filter). EMG signals were resampled at 360 Hz, registered to platform onset to within 1 sample (0.03 s) before platform onset, and truncated to be 512 samples long (1.42 s), including 10 samples (0.03 s) before platform onset. EMG signals were normalized to the unit interval.

Mean difference curves. Differences in average EMG waveform shape across levels of peak perturbation velocity and peak perturbation acceleration were visualized as mean difference curves. Grand mean time courses of EMG activity for each muscle and level of perturbation acceleration and velocity were calculated. Mean difference curves across perturbation levels were calculated by subtracting the grand mean time course from the lowest level of perturbation acceleration or velocity from each higher level. Mean difference curves represent the mean effect of increases in perturbation level but provide no information about whether any part of the curve corresponds to statistically significant effects.

Wavelet decomposition and structure of wavelet-transformed signals. The structure of the discrete wavelet transform can be understood as generally analogous to that of the more familiar discrete Fourier transform in both of these linear transformations. Similar to the discrete Fourier transform, the discrete wavelet transform results in a number of wavelet coefficients equal to the number of time samples of the transformed signal (Fig. 3, A and B), provided the length of the signal is a power of two. Signals can be padded with zeros or symmetrically extended to appropriate length. This one-to-one correspondence is advantageous for both transforms because it provides a reversible linear transformation from the original signal to the wavelet (or Fourier) domain and back. Wavelet basis functions are typically orthogonal, as are the sinusoidal elements that form the basis functions of the Fourier transform. This characteristic is important for many applications, including signal processing and data compression. In particular, wavelets provide a compact representation of signals, enabling efficient compression and analysis.

Table 1. Total number of replicates across subjects for each condition

<table>
<thead>
<tr>
<th>Velocity Factor Level</th>
<th>Peak Velocity</th>
<th>Acceleration Factor Level</th>
<th>0.2 g</th>
<th>0.3 g</th>
<th>0.4 g</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25 cm/s</td>
<td>37 F, 36 B</td>
<td>37, 36</td>
<td>37, 37</td>
<td>111, 109</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30 cm/s</td>
<td>37, 37</td>
<td>37, 36</td>
<td>37, 36</td>
<td>111, 109</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>35 cm/s</td>
<td>37, 37</td>
<td>38, 37</td>
<td>34, 38</td>
<td>109, 112</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>40 cm/s</td>
<td>38, 33</td>
<td>33, 37</td>
<td>37, 37</td>
<td>108, 107</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>149, 143</td>
<td>145, 146</td>
<td>145, 148</td>
<td>439, 437</td>
<td></td>
</tr>
</tbody>
</table>

F, number of forward perturbations for which tibialis anterior (TA) is the agonist; B, number of backward perturbations for which medial gastrocnemius (MG) is the agonist.
in the Fourier domain. This orthogonality is important for statistical inference, as multivariate procedures such as multivariate ANOVA (MANOVA) break down when high correlations are observed between variables, as in time series data. Because observations in the wavelet domain or Fourier domains are nearly uncorrelated (Angelini and Vidakovic 2003; Fan and Lin 1998; Vidakovic 2001), these effects are minimized.

However, whereas the sinusoids that form the basis in the Fourier domain are infinite in time (Fig. 3C), wavelets are temporally localized functions that are nonzero only in small regions (Fig. 3D). Whereas Fourier transforms depend heavily on cancellation (Strang 1989), resulting in a large number of frequencies to reconstruct a square-wave, for example (Fig. 3C), many wavelet coefficients in the transformed data may be of small or zero magnitude (Fig. 3D). Therefore, signals can be compressed into fewer wavelet coefficients than original time samples by quantizing or eliminating small-magnitude coefficients. This enables the use of the wavelet transform as part of a data compression scheme (Unser and Aldroubi 1996).

In contrast to the discrete Fourier transform, in which the transformed coefficients are arranged in order of increasing frequency (Fig. 3A), the coefficients of the discrete wavelet transform are arranged in a blocked structure that is ordered in time as well as in frequency (Fig. 3B). This blocked structure results from the recursive filtering and downsampling process used to perform the discrete wavelet transform. The first block of coefficients, referred to as the “approximation” coefficients, comprise a low-pass filtered, downsampled representation of the original signal produced by convolving the signal with a low-pass filter (based on the approximation or “father” wavelet) and downsampling the filtered signal by a factor of two (Cohen and Kovacevic 1996). The approximation coefficients are arranged in order of increasing time, roughly representing the magnitude of the signal at that time point, which corresponds to the peak of the wavelet function for the third-order coiflets used here. The remaining blocks of coefficients, referred to as “detail” coefficients, represent successively higher frequency information that is absent from the approximation and are produced by convolving the signal with a high-pass filter based on the detail or “mother” wavelet. The coefficients within each detail block are also arranged in order of increasing time, although the length of the detail blocks increases with the frequency content. For the length 512 signals and level 4 wavelet decomposition used here, the approximation coefficients (level a4) are arranged in a block of length 32, followed by blocks of detail coefficients of length 32 (level d4), 64 (d3), 128 (d2), and 256 (d1) with progressively higher frequency content (Fig. 3B). To produce a multilevel wavelet decomposition, the signal is 1st divided into approximation and detail coefficients, and approximation coefficients are recursively divided into higher-level approximation and detail coefficients. The maximum number of recursions during the transform depends on both the length of the input signal and the particular wavelet chosen.

wANOVA. Individual EMG waveforms were transformed to the wavelet domain using the MATLAB wavelet toolbox (http://www.mathworks.com; The MathWorks) and analyzed with three-factor ANOVA (velocity × acceleration × subject). EMG signals were transformed using third-order coiflets (decomposition level 4; wavedec.m) with periodic extension. Coiflets were selected because they are symmetrical and therefore do not introduce phase distortions in the locations of the transformed signals. We assumed a fixed-effects three-factor ANOVA model (Sokol and Rohlf 1981) where each wavelet coefficient was comprised as:

\[Y_{ijkw} = M(w) + A_{i}(w) + B_{j}(w) + C_{k}(w) + E_{ijkw}(w) \]

where \(M(w) \) designates the wavelet coefficients of the grand mean, \(A_{i}(w) \) designates the effects of the \(i \)th peak platform velocity level (among 25, 30, 35, and 40 cm/s), \(B_{j}(w) \) designates the effects of the \(j \)th peak platform acceleration level (among 0.2, 0.3, and 0.4 g), \(C_{k}(w) \) designates the effects of the \(k \)th subject (among 1–7), and \(E_{ijkw}(w) \) designates Gaussian random process noise on the \(n \)th replicate of that combination of other factors. Wavelet coefficients corresponding to significant initial \(F \) tests (anovan.m) at significance level \(\alpha = 0.05 \) were then evaluated for significant contrast across velocity or acceleration levels with separate post hoc Scheffé tests to test the following null hypotheses:
After initial ANOVA, post hoc tests (multcompare.m) were performed for each of the velocity and acceleration factors at significance levels Bonferroni-corrected by the number of significant corresponding initial F tests. Contrasts in wavelet magnitude were calculated with respect to the lastest velocity and acceleration conditions. Statistically significant contrasts in wavelet coefficient magnitude were then assembled into wavelet-domain contrast curves and transformed back to the time domain. All coefficients of wavelet-domain contrast curves were initially zero; wavelet coefficients corresponding to significant contrasts were set to the estimate of the contrast. Wavelet-domain contrast curves were then transformed back to the time domain for visualization (waverec.m).

`tANOVA` `tANOVA` was performed identically to `wfANOVA` with the exception that it was performed entirely in the time domain. Similar to `wfANOVA`, three-way ANOVA (velocity × acceleration × subject) was performed at each time point at significance level \(\alpha = 0.05 \). We assumed a fixed-effects three-factor ANOVA model where each time sample was comprised as

\[
y_{ijk}(t) = \mu(t) + \alpha_i(t) + \beta_j(t) + \gamma_k(t) + \epsilon_{ijk}(t)
\]

where \(\mu(t) \) designates the grand mean, \(\alpha_i(t) \) designates the effects of peak platform velocity level \(i \), \(\beta_j(t) \) designates the effects of peak platform acceleration \(j \), \(\gamma_k(t) \) designates the effects of subject \(k \), and \(\epsilon_{ijk}(t) \) designates Gaussian random process noise on the \(nth \) replicate of that combination of other factors. Time samples corresponding to significant initial F tests were then evaluated for significant contrast across velocity or acceleration levels with separate post hoc Scheffé tests to test the following null hypotheses:

\[
H_{0i}: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4
\]

\[
H_{0j}: \beta_1 = \beta_2 = \beta_3
\]

As in `wfANOVA`, post hoc tests were performed for each of the velocity and acceleration factors at significance levels Bonferroni-corrected by the number of significant corresponding initial F tests. All coefficients of time-domain contrast curves were initially zero. Time samples corresponding to significant contrasts were set to the estimate of the contrast.

Comparing `wfANOVA` and `tANOVA`. We assessed the ability of `wfANOVA` and `tANOVA` to identify the variation in EMG waveforms with peak perturbation acceleration and peak perturbation velocity identified previously using time bin analysis. We predicted that significant contrasts due to perturbation peak acceleration would be temporally localized within the IB, whereas significant contrasts due to perturbation peak velocity would be temporally localized within the PR. Contrast curves identified by `wfANOVA` and `tANOVA` were compared with each other as well as to mean difference curves by visual inspection and by quantifying the onset times, offset times, and widths of identified features. Onset and offset times were calculated as the times of the first and last samples for which curves were >10% of their positive peak value and were verified manually.

Feature width was quantified as offset time minus onset time. Feature width for curves containing only zero values was specified as zero. Differences in onset time, offset time, and feature width between `wfANOVA` and `tANOVA` contrast curves were evaluated using paired \(t \)-tests.

To estimate differences in statistical power obtained with `wfANOVA` and `tANOVA`, we directly compared the number of significant initial F tests identified by the two methods. The Bonferroni correction for multiple comparisons requires that the significance level \(\alpha \) used in post hoc tests be divided by the number of significant initial F tests. Therefore, we compared the number of significant initial F tests (matched \(t \)-test, \(\alpha = 0.05 \)) as a measure of relative statistical power of the two methods. All values are reported as means ± SD unless otherwise noted.

Performance of `wfANOVA` and `tANOVA` on simulated EMG data. We next tested the ability of `wfANOVA` and `tANOVA` to identify contrast curves in data with temporal structure that was known a priori. Simulated EMG waveforms were created for all levels of platform acceleration and velocity by scaling and summing waveform shapes derived from the average rectified platform acceleration and velocity for midlevel perturbations and adding noise processed to approximate recorded EMGs (Fig. 4). Although the acceleration and velocity waveform shapes overlapped in time, they were independently scaled across perturbation levels. Although the independent scaling of acceleration and velocity means that the waveforms did not represent physically realizable perturbations, it allowed us to evaluate the performance of the two methods using a two-factor ANOVA model with no interaction.

Recorded platform acceleration and velocity traces for peak acceleration level of 0.3 g and peak velocity level of 30 cm/s were averaged and normalized to have unit maximum value. To simulate EMGs across perturbation conditions, acceleration and velocity traces were subjected to a common delay and scaled by the appropriate perturbation magnitudes (0.2–0.4 g and 25–40 cm/s) as well as by scaling factors that were selected manually so that simulated EMG waveforms were of comparable magnitude to recorded EMG waveforms in the 0.3-g, 30 cm/s perturbation condition. See Table 2 for parameter values.

A combination of Gaussian and signal-dependent noise was added to each of 30 trials for each condition for a total of 360 trials. Gaussian noise was taken with mean 0 and standard deviation \(\sigma_G = n_G \) sampled at each time step in the simulations. In signal-dependent noise, the peak perturbation magnitude scaling - varies with perturbation level

signal-dependent noise

Gaussian noise

simulated EMG

peak perturbation magnitude scaling

N(0,nG)

N(0,nG)

filter+rectify

N(0,nG)

v

a

fixed canonical platform kinematics

fixed time delay

scaling parameters

\(v_{max} \)

\(a_{max} \)

\(t_d \)

\(\alpha \)

\(\beta \)

\(\gamma \)

\(\epsilon \)

noiseless EMG value; \(\mu \); signal-dependent noise parameter; \(\sigma_G \); Gaussian noise parameter.

\[H_{0i}: A_1 = A_2 = A_3 = A_4 \]

\[H_{0j}: B_1 = B_2 = B_3 \]
amplitude of random variability increases with the signal mean. Therefore, similar to previous studies (Harris and Wolpert 1998; Tresch et al. 2006; Valero-Cuevas et al. 2009), signal-dependent noise was modeled as Gaussian noise with mean 0 and standard deviation \(\sigma_{SDN} = n_{SDN} \cdot e \), where \(e \) is the noiseless EMG value. Noise contributions from both sources were added, and the sum was processed identically to recorded EMG (see above) to match approximately the bandwidth of recorded signals. Noise was processed before adding to the baseline waveforms so that the differences between perturbation levels would be known exactly. To test the robustness of \(\text{wfANOVA} \) and \(\text{tANOVA} \), and the similarity between the identified contrast curves and the known underlying signals was quantified with \(r^2 \) and onset times, offset times, and widths of identified features. The procedures for \(\text{wfANOVA} \) and \(\text{tANOVA} \) on simulated EMGs were identical to those performed on experimental data with the exception that the subject factor was omitted. Goodness-of-fit \((r^2) \) was calculated between identified contrast curves and known difference curves between baseline EMG waveforms for each level. Onset times, offset times, and feature widths of identified contrast curves were calculated as in experimental data and expressed as errors relative to values in known difference curves. Differences in \(r^2 \) values and errors in onset times, offset times, and feature widths between \(\text{wfANOVA} \) and \(\text{tANOVA} \) contrast curves were assessed with paired Wilcoxon signed-rank tests.

RESULTS

Contrasts in the temporal domain identified across perturbation levels. Visual inspection of TA and MG EMG traces suggested that EMG magnitude during IB increased with increases in peak platform acceleration (e.g., Fig. 5, blue traces from left to right), whereas EMG magnitude during PR increased with increases in peak platform velocity (e.g., Fig. 5, contrast V3 vs. V2, contrast A1 vs. A2).

Table 2. Parameters used for simulated EMGs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_v)</td>
<td>Platform velocity scaling factor</td>
<td>0.005</td>
</tr>
<tr>
<td>(c_a)</td>
<td>Platform acceleration scaling factor</td>
<td>0.75</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Time delay</td>
<td>100 ms</td>
</tr>
<tr>
<td>(n_{SDN})</td>
<td>Signal-dependent noise scaling parameter</td>
<td>0.6</td>
</tr>
<tr>
<td>(n_G)</td>
<td>Gaussian noise scaling parameter</td>
<td>0.2</td>
</tr>
</tbody>
</table>

EMG, electromyogram.

Simulated EMG waveforms were subjected to \(\text{wfANOVA} \) and \(\text{tANOVA} \), and the similarity between the identified contrast curves and the known underlying signals was quantified with \(r^2 \) and onset times, offset times, and widths of identified features. The procedures for \(\text{wfANOVA} \) and \(\text{tANOVA} \) on simulated EMGs were identical to those performed on experimental data with the exception that the subject factor was omitted. Goodness-of-fit \((r^2) \) was calculated between identified contrast curves and known difference curves between baseline EMG waveforms for each level. Onset times, offset times, and feature widths of identified contrast curves were calculated as in experimental data and expressed as errors relative to values in known difference curves. Differences in \(r^2 \) values and errors in onset times, offset times, and feature widths between \(\text{wfANOVA} \) and \(\text{tANOVA} \) contrast curves were assessed with paired Wilcoxon signed-rank tests.

RESULTS

Contrasts in the temporal domain identified across perturbation levels. Visual inspection of TA and MG EMG traces suggested that EMG magnitude during IB increased with increases in peak platform acceleration (e.g., Fig. 5, blue traces from left to right), whereas EMG magnitude during PR increased with increases in peak platform velocity (e.g., Fig. 5, contrast V3 vs. V2, contrast A1 vs. A2).

Table 2. Parameters used for simulated EMGs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_v)</td>
<td>Platform velocity scaling factor</td>
<td>0.005</td>
</tr>
<tr>
<td>(c_a)</td>
<td>Platform acceleration scaling factor</td>
<td>0.75</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Time delay</td>
<td>100 ms</td>
</tr>
<tr>
<td>(n_{SDN})</td>
<td>Signal-dependent noise scaling parameter</td>
<td>0.6</td>
</tr>
<tr>
<td>(n_G)</td>
<td>Gaussian noise scaling parameter</td>
<td>0.2</td>
</tr>
</tbody>
</table>

EMG, electromyogram.

Simulated EMG waveforms were subjected to \(\text{wfANOVA} \) and \(\text{tANOVA} \), and the similarity between the identified contrast curves and the known underlying signals was quantified with \(r^2 \) and onset times, offset times, and widths of identified features. The procedures for \(\text{wfANOVA} \) and \(\text{tANOVA} \) on simulated EMGs were identical to those performed on experimental data with the exception that the subject factor was omitted. Goodness-of-fit \((r^2) \) was calculated between identified contrast curves and known difference curves between baseline EMG waveforms for each level. Onset times, offset times, and feature widths of identified contrast curves were calculated as in experimental data and expressed as errors relative to values in known difference curves. Differences in \(r^2 \) values and errors in onset times, offset times, and feature widths between \(\text{wfANOVA} \) and \(\text{tANOVA} \) contrast curves were assessed with paired Wilcoxon signed-rank tests.

RESULTS

Contrasts in the temporal domain identified across perturbation levels. Visual inspection of TA and MG EMG traces suggested that EMG magnitude during IB increased with increases in peak platform acceleration (e.g., Fig. 5, blue traces from left to right), whereas EMG magnitude during PR increased with increases in peak platform velocity (e.g., Fig. 5, contrast V3 vs. V2, contrast A1 vs. A2).

Table 2. Parameters used for simulated EMGs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_v)</td>
<td>Platform velocity scaling factor</td>
<td>0.005</td>
</tr>
<tr>
<td>(c_a)</td>
<td>Platform acceleration scaling factor</td>
<td>0.75</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Time delay</td>
<td>100 ms</td>
</tr>
<tr>
<td>(n_{SDN})</td>
<td>Signal-dependent noise scaling parameter</td>
<td>0.6</td>
</tr>
<tr>
<td>(n_G)</td>
<td>Gaussian noise scaling parameter</td>
<td>0.2</td>
</tr>
</tbody>
</table>

EMG, electromyogram.

Simulated EMG waveforms were subjected to \(\text{wfANOVA} \) and \(\text{tANOVA} \), and the similarity between the identified contrast curves and the known underlying signals was quantified with \(r^2 \) and onset times, offset times, and widths of identified features. The procedures for \(\text{wfANOVA} \) and \(\text{tANOVA} \) on simulated EMGs were identical to those performed on experimental data with the exception that the subject factor was omitted. Goodness-of-fit \((r^2) \) was calculated between identified contrast curves and known difference curves between baseline EMG waveforms for each level. Onset times, offset times, and feature widths of identified contrast curves were calculated as in experimental data and expressed as errors relative to values in known difference curves. Differences in \(r^2 \) values and errors in onset times, offset times, and feature widths between \(\text{wfANOVA} \) and \(\text{tANOVA} \) contrast curves were assessed with paired Wilcoxon signed-rank tests.

RESULTS

Contrasts in the temporal domain identified across perturbation levels. Visual inspection of TA and MG EMG traces suggested that EMG magnitude during IB increased with increases in peak platform acceleration (e.g., Fig. 5, blue traces from left to right), whereas EMG magnitude during PR increased with increases in peak platform velocity (e.g., Fig. 5, contrast V3 vs. V2, contrast A1 vs. A2).

Table 2. Parameters used for simulated EMGs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_v)</td>
<td>Platform velocity scaling factor</td>
<td>0.005</td>
</tr>
<tr>
<td>(c_a)</td>
<td>Platform acceleration scaling factor</td>
<td>0.75</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Time delay</td>
<td>100 ms</td>
</tr>
<tr>
<td>(n_{SDN})</td>
<td>Signal-dependent noise scaling parameter</td>
<td>0.6</td>
</tr>
<tr>
<td>(n_G)</td>
<td>Gaussian noise scaling parameter</td>
<td>0.2</td>
</tr>
</tbody>
</table>

EMG, electromyogram.

Simulated EMG waveforms were subjected to \(\text{wfANOVA} \) and \(\text{tANOVA} \), and the similarity between the identified contrast curves and the known underlying signals was quantified with \(r^2 \) and onset times, offset times, and widths of identified features. The procedures for \(\text{wfANOVA} \) and \(\text{tANOVA} \) on simulated EMGs were identical to those performed on experimental data with the exception that the subject factor was omitted. Goodness-of-fit \((r^2) \) was calculated between identified contrast curves and known difference curves between baseline EMG waveforms for each level. Onset times, offset times, and feature widths of identified contrast curves were calculated as in experimental data and expressed as errors relative to values in known difference curves. Differences in \(r^2 \) values and errors in onset times, offset times, and feature widths between \(\text{wfANOVA} \) and \(\text{tANOVA} \) contrast curves were assessed with paired Wilcoxon signed-rank tests.

RESULTS

Contrasts in the temporal domain identified across perturbation levels. Visual inspection of TA and MG EMG traces suggested that EMG magnitude during IB increased with increases in peak platform acceleration (e.g., Fig. 5, blue traces from left to right), whereas EMG magnitude during PR increased with increases in peak platform velocity (e.g., Fig. 5, contrast V3 vs. V2, contrast A1 vs. A2).
time periods (Fig. 5, black trace, contrast peak velocity level were nonzero throughout IB as well as PR acceleration as well as with peak velocity, and the mean rated, as IB magnitude appeared to scale with both peak the effects of acceleration and velocity were not clearly sepa-
cred, with nonzero regions spanning 1,016
curves were nonzero for almost the entire time course consid-
red, fANOVAacceleration contrast-curve onset times were 107
previously described scaling relationships but without assum-
}
post hoc tests in the two methods (25 ± 14%; matched t-test, P < 0.11, t_5 = 2.2). Considering the subject factor, all 512 time samples for tANOVA were significantly different, whereas 88 wavelet coefficients, including all 32 approximation-level wavelet coefficients, were significantly different for both TA and MG. Although we did not perform post hoc tests on subject factors, these differences demonstrate that there were differences in the mean waveform shape across subjects. We were nonetheless able to identify common effects of the acceleration and velocity factors on these waveforms.

Wavelet coefficients that varied significantly in post hoc tests were centered at time points consistent with the location of differences identified in contrast curves (Fig. 6). Across acceleration contrasts, 5 of 12 significant wavelet coefficients for TA and 3 of 5 coefficients for MG were centered within IB. In addition, some wavelet coefficients that varied with peak acceleration level were identified after the end of PR (TA, 2/12; MG, 2/5). Across velocity contrasts, the majority of significant wavelet coefficients (TA, 5/6; MG, 6/6) were centered after PR. Because wavelet coefficients centered later in the response also contribute substantial energy during earlier periods, the absence of significant wavelets during the PR period does not imply that there were no differences in waveforms during PR. For example, one of the wavelet coefficients that varied significantly with perturbation peak velocity for MG was centered at 567.5 ms after perturbation onset, well after the end PR (400 ms). However, the first nonzero sample of the wavelet corresponding to that coefficient was much earlier, at 216.7 ms, and the absolute magnitude of the wavelet waveform had increased to ~20% of its maximum by 400 ms.

Simulated EMG data. wfANOVA revealed actual contrasts with high precision, superior to tANOVA, when applied to simulated EMG signals with nominal noise levels chosen to resemble experimental EMG data (Fig. 7, green traces, bottom right). At this noise level, the average r² values between original and noise-corrupted signals was 0.78 ± 0.06. Contrast curves identified by wfANOVA were similar to the known differences in the signals (Fig. 7, compare red vs. green traces; r² = 0.94 ± 0.08). As in the case of experimental data, tANOVA identified discontinuous contrast curves (Fig. 8, yellow trace, contrast V₂) and also failed to find any significant contrast between the lowest two levels of velocity (Fig. 7, compare red vs. yellow traces for V₁). The r² values between tANOVA contrast curves and actual contrast curves were lower than in wfANOVA (r² = 0.76 ± 0.43), although this difference was not statistically significant due to the small sample (paired t-test; P < 0.30, t_4 = 1.19). Compared with wfANOVA, tANOVA contrast curves also exhibited delayed onset time (43 ± 41 ms), advanced offset time (39 ± 46 ms), and decreased feature width (82 ± 84 ms), similar to the

Fig. 7. Comparison of waveforms representing mean differences across perturbation levels (mean difference curves; black) identified in simulated EMG data (gray) with contrast curves identified with wfANOVA (red) and tANOVA (yellow) and with veridical underlying signals (green). Legend as in Fig. 4. Numbers next to curves indicate r² values between identified mean difference curve or contrast curve and underlying signals. ★Combination of peak acceleration and peak velocity that was used to generate the remaining perturbation levels. au, Arbitrary units.
findings using experimental data. However, these differences did not reach statistical significance ($P \approx 0.079$) due to the small sample size.

Across noise levels, wfANOVA performed superior to tANOVA in identifying contrast curves in simulated data with known temporal structure. Simulated EMG waveforms varied from almost noiseless (average R^2 between original and noiseless signals 0.93 ± 0.02) to highly degraded ($R^2 = 0.13 \pm 0.07$; Fig. 8, A and B). As expected, both algorithms had reduced ability to identify significant features of contrast curves as noise level increased. However, wfANOVA was more tolerant to noise (Fig. 8C). For example, at the highest noise level, wfANOVA identified significant contrasts at levels V_2, A_1, and A_2, whereas tANOVA identified significant contrasts only at level A_2. Across noise levels, wfANOVA was able to reveal better the actual contrast curves than tANOVA as measured by R^2 (median \pm interquartile range: 0.92 ± 0.87, wfANOVA; vs. 0.29 ± 0.90, tANOVA; $P < 10^{-7}$; Wilcoxon paired signed-rank test), onset time error (33 ± 61 vs. 57 ± 100 ms; $P < 10^{-5}$), offset time error (47 ± 95 vs. 54 ± 86; $P < 10^{-4}$), and feature width error (99 ± 367 vs. 178 ± 428; $P < 10^{-7}$).

DISCUSSION

Here, we developed a novel method to compare statistically the shapes of waveforms that are functions of time that could be applied to many types of neurophysiological and other data. The technique can be used to identify temporal features characterizing the differences between waveforms across conditions that may not appear to be statistically significant due to multiple comparisons required across time points and that are abolished when analyzing large time bins. Such challenges are observed widely across neurophysiological and kinematic data, which are functions of time, and could be equally useful in the analysis of EMGs, reflex responses, kinematics, or neural firing rates. The method can also be extended by using different statistical procedures on the wavelet coefficients.

An advantage of wfANOVA is that no time windows need be assumed, removing the bias of the experimenter and possibly aiding in data discovery. The timing of significant differences in the contrast curves identified using wfANOVA were consistent with our previous analysis in which we selected time windows a priori based on previous knowledge, a proposed hypothesis, and trial and error (Welch and Ting 2009). Therefore, using wfANOVA can be used to identify the time windows of interest without prior knowledge or bias. Of course, this approach carries with it the burden of carefully controlling for false positives, which has been a subject of controversy in the neuroimaging literature (Bennett et al. 2009). We consider our implementation of wfANOVA conservative in that it uses a Bonferroni procedure to control the familywise error rate. Other approaches, such as false discovery rate controls, are available and have been applied to neuroimaging data (Genovese et al. 2002).

wfANOVA further revealed that the magnitude of mean difference curves found by subtracting time traces was not a reliable predictor of statistically significant differences between conditions. In our data set, we were able to reveal that some very small features were statistically significant, whereas larger ones that presumably had more variability were not statistically significant. As an example, our data showed small statistically significant features with changes in acceleration in a time period that we did not analyze in the prior study (Fig. 5, e.g., contrasts A_1 and A_2). Bumps in red curve just before 1st
vertical line). These differences likely reflect scaling of short-latitude stretch reflex activity, which has been previously shown to be active during this time period (Carpenter et al. 1999; Gollhofer et al. 1989), starting ~50 ms earlier than the long-latency response that was the focus of our prior study (Welch and Ting 2009). Thus wFANOVA can reveal meaningful contrasts across conditions that may not be apparent in visual inspection due to feature size, potentially providing novel insight into underlying neural mechanisms.

One primary difference between our approach and wavelet-domain statistical techniques applied previously to neuroimaging data is that we apply the wavelet transform to all data replicates within and across conditions rather than averaging data within each condition or subject before conversion to the waveform domain. In addition, we focus on variations in the temporal rather than spatial domain. In many cases, wavelet-domain statistical analysis is used in medical imaging data as a “denoising” filter to estimate the underlying signals from multiple replicates of data with extremely low signal-to-noise ratio (Dinov et al. 2005; Fadili and Bullmore 2004; Raz and Turetsky 1999; Ruttimann et al. 1998; Unser and Aldroubi 1996). Because neuroimaging signals, particularly functional MRI (fMRI), tend to be noisy and of small magnitude, with signal intensity changes close to scan-to-scan variability, prior techniques first obtained averaged fMRI data for each subject within each experimental condition before performing the wavelet transformation (Raz and Turetsky 1999; Ruttimann et al. 1998) and performed statistical tests on a subset of wavelet coefficients at prespecified levels of detail to increase statistical power. Because the signal-to-noise ratio is much less problematic in EMG signals, we were able to apply directly the wavelet transformation to all replicates of EMG collected and to perform ANOVA on all wavelet coefficients without any a priori assumptions about their importance.

We performed some initial analyses suggesting that there is little benefit to prefiltering data by thresholding wavelet coefficients before performing ANOVA and that, further, such procedures can introduce unwanted artifacts. To test this idea, we reanalyzed experimental data from muscle TA presented in RESULTS with the addition of an initial thresholding procedure. In our reanalysis, we applied a hard threshold rule before performing ANOVA and post hoc tests on wavelet coefficients. Wavelet coefficients for which the grand mean of the waveform transform magnitude was below a threshold corresponding to the 50th, 90th, or 99th percentile of observed wavelet coefficient magnitudes (Fig. 9A) were set to 0. Reconstructed waveforms at the 50th percentile threshold were similar to the original data ($r^2 \approx 0.99$; Fig. 9B) and almost doubled the critical value that could be used in the post hoc tests, nominally increasing power. However, there were no practical benefits to this power increase because the number of significant post hoc tests remained unchanged. Thresholding at the 90th percentile ($r^2 \approx 0.90$) introduced a small negative-going artifact in the signal before EMG onset (Fig. 9B, 2nd to top trace) and decreased the number of significant post hoc tests by 25%. At the 99th percentile threshold, waveforms were considerably smoothed ($r^2 = 0.45 \pm 0.19$), and the negative-going artifacts were introduced well before EMG onset, at latencies of ~80 ms. Increased threshold levels also led to the introduction of artifacts in identified contrast curves (Fig. 9C; note that negative bump in contrast V_j that is apparent at lower threshold levels is absent at 99th percentile threshold). Although many more sophisticated thresholding procedures exist and could be beneficial (Donoho and Johnstone 1994; Donoho et al. 1995), more research is required to identify recommended practices.

General applications. Although our implementation of wFANOVA presented a particular statistical model, the underlying concept of performing statistical inference in the wavelet domain and then transforming back to time domain is general to ANOVA and other statistical tests. Here, we presented one particular implementation of wFANOVA based on a fixed-effects ANOVA model. However, interaction effects could also be included in the ANOVA model. Similarly, MANOVA hypothesis tests for different blocks of wavelet coefficients have been suggested for fMRI data (Raz and Turetsky 1999). False discovery rate controls (Benjamini and Hochberg 1995) could also be applied in place of the Bonferroni procedures presented here.
Statistical inference can also be applied to transforms other than the wavelet transform that involve a common orthogonal basis for all waveforms under analysis. It is possible to perform analyses similar to wFANOVA using the discrete Fourier transform rather than the discrete wavelet transform (Fan and Lin 1998), although the Fourier transform typically provides a less compact description of biomedical signals. However, although wavelet packet transforms can provide a more compact description of EMG signals (Hart and Giszter 2004) than either the discrete Fourier transform or the discrete wavelet transform, they cannot be used in wFANOVA without additional constraints on the packet tree. Depending on the way the packet tree is structured, each waveform may be represented by a unique set of functions, prohibiting comparisons across waveforms. An alternative could be to represent all waveforms by a common overcomplete basis; however, this would increase the number of comparisons.

Finally, wFANOVA may also be useful in comparing a single observation with a population average such as when comparing data from an impaired individual with controls or comparing a model prediction with experimental data. Currently, such comparisons are difficult in part because r^2 values may penalize high-frequency components while ignoring differences in overall waveform shape. Differences in the high-frequency content are particularly pronounced when comparing model predictions and experimental data, and multiple goodness-of-fit metrics (such as r^2 and variance accounted for) may be required to reduce sensitivity to noise (Ting and Chvatal 2011). Another approach is to examine whether the model predictions fall within standard deviations or confidence intervals generated from data on a per-sample basis, similar to the tANOVA approach presented here. However, this approach leads to problems of multiple comparisons similar to those described earlier for tANOVA because statistical tests designed for single values are not well-suited to comparing a model prediction and experimental data, and multiple goodness-of-fit metrics (such as r^2 and variance accounted for) may be required to reduce sensitivity to noise (Ting and Chvatal 2011). Another approach is to examine whether the model predictions fall within standard deviations or confidence intervals generated from data on a per-sample basis, similar to the tANOVA approach presented here. However, this approach leads to problems of multiple comparisons similar to those described earlier for tANOVA because statistical tests designed for single values are not well-suited to comparing waveforms or curves (Fan and Lin 1998; Lund et al. 2011). To address this issue, the wANOVA framework could be modified to identify better which features of a single model prediction or experimental measurement are significantly different from a set of control data and which are not.

ACKNOWLEDGMENTS

We thank H. Bartlett, J. T. Bingham, S. A. Chvatal, D. J. Jilk, and S. A. Safavynia for helpful comments.

Present address of T. D. J. Welch: Exponent, Inc., Phoenix, AZ.

GRANTS

National Institute of Neurological Disorders and Stroke Grant NS-058322 supported this work.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

ENDNOTE

At the request of the authors, readers are herein alerted to the fact that additional materials related to this manuscript may be found at the institutional web site of the authors, which at the time of publication they indicate is: https://neur Oblab.gatech.edu/wp/wp-content/uploads/2012/08/wFANOVARdeno.zip. These materials are not a part of this manuscript and have not undergone peer review by the American Physiological Society (APS). APS and the journal editors take no responsibility for these materials, the web site address, or any links to or from it.

AUTHOR CONTRIBUTIONS

REFERENCES

