Assessment of Gait Abnormalities in Individuals with Parkinson’s Disease With and Without Suspected Cholinergic Deficits

Morgan Bridges, Meredith Ehrenheim, Kristin Muldowney, Madison Ryan, Meghan Stanley
Division of Physical Therapy, Department of Rehabilitation Emory University School of Medicine Atlanta, GA
J. Lucas McKay PhD MSCR, Advisor

INTRODUCTION

- Parkinson’s disease (PD) is a neurodegenerative disorder associated with the reduction of dopamine in the basal ganglia, characterized by a clinical spectrum of motor and non-motor presentations.
- Differences in cholinergic system degeneration may explain some of the clinical variations seen in patients with PD.
- The specific features of cholinergic degeneration seen in PD are impaired cognition, slower gait speed, falling, rapid eye movement sleep behavior disorder (RBD), and impaired olfaction.

PURPOSE

- The motivation of this study was to test whether or not cholinergic system degeneration, in addition to basal ganglia deficits, contributes to varying gait deficits seen in PD.
- The primary hypothesis of this study is that patients with PD explain some of the clinical variations seen in the patient’s electronic medical record.

METHODS

- Design: Observational, cross-sectional study performed in a movement disorders clinic in an urban setting, recruiting sequential patients.
- Study population:
 - Goal: To recruit 200 participants for a 10% representative sample of the Parkinson’s patients seen in the Emory Movement Disorders Clinic.
 - Inclusion criteria for enrollment:
 - Diagnosis of idiopathic PD or other parkinsonian syndromes
 - Ability to provide informed consent in English
 - Exclusion criteria for gait assessment:
 - Lower extremity weight bearing restriction
 - Lower extremity botulinum toxin in previous 3 months
 - Safety concerns with ambulation

- Enrollment: Patients were invited for participation by their physician. Patients who met the inclusion criteria provided informed consent before undergoing a brief clinical interview.
- Patient anthropometrics, including hip width and leg length, were taken in order to normalize gait data.

METHODS

- Participants were assessed for clinical study variables during a brief interview.
- Height, weight, fall history, amount of school completed, overall self-assessed mobility and health, joint pain, and the presence of RBD were all reported subjectively.
- A separate member of the study staff obtained further demographic information from the patient’s electronic medical record.

Gait Testing

- Eligible patients underwent gait testing on a pressure-sensitive walkway.
- The gait assessment consisted of walking 25 feet along one side of the mat, turning around a cone, and walking back to the starting end of the mat.
- Each participant completed a trial turning clockwise and counterclockwise to account for the presence of lateralized symptoms.
- Patient instructions:
 - Walk at a comfortable pace
 - Remain silent during testing
 - Use an assistive device if needed for safe ambulation

RESULTS & DISCUSSION

- Of the 147 individuals that underwent gait analysis, 37 were classified as suspected hypocholinergic and 115 were classified as suspected normocholinergic based on a brief clinical screen derived from the literature.
- After interim univariate analyses, we found that the presence of suspected cholinergic deficits was associated with an ≈11% decrease in normalized gait speed, an ≈8% decrease in normalized step length, and negligible increase in stride width.
- Clinicians can use a quick clinical screen, without interrupting facility workflow, to determine suspected cholinergic deficits.

LIMITATIONS

- Potential overestimation of refusal rate due to communication with clinic physicians
- Inter-rater reliability may be affected due to 10+ study staff
- Gait data collected in a potentially distracting environment
- Potential misclassification bias due to the possibility of overestimating number of patients as normocholinergic, which could increase variance
- Safety concerns with ambulation

ACKNOWLEDGEMENTS

We would like to thank Dr. J Lucas McKay, Dr. Joe Nocera, Erin Bailey, Cameron Jaball, Rebecca Jensen, McCabe Powell, Amy Professory, Leah Mountain, and the physicians, especially Alan Freeman, M.D. and Stewart Factor, D.O. and staff of the Emory Brain Health Center for their support throughout this project.

REFERENCES