Understanding falls at the patient and group level in Parkinson’s disease

J. Lucas McKay, Ph.D., M.S.C.R
Assistant Professor
Acknowledgments and disclosures

JL McKay PhD MSCR
Biomedical Engineering,
Emory/Georgia Tech

Emory Physical Therapy
Students
C Behling, M Bridges,
M Brogan, M Ehrenheim,
K Jacobs, M Kilgore,
K Muldowney,
S Nithiananda, E Rift,
M Ryan, M Stanley, S Su,
M Volden, H Williford

Emory Public Health
Students
C Kiang, L Shafer

K25 Mentors
Thomas Wichmann, MD
Klaus Jahn, MD

Funding
NIH K25HD086276

Disclosures
None

LH Ting PhD
Biomedical Engineering,
Emory/Georgia Tech
Emory Rehabilitation
Medicine

Neuromechanics
Laboratory
K Lang, PhD, S Bong

Emory Physical Therapy
Students
H Compton, M Harris,
K Kramer, M McCall,
J Perry, C Pope, C Roberts,
A Ruedrich

Funding
NIH R01HD046922
NIH R21HD075612

Disclosures
None

SA Factor DO
Emory Neurology

Brain Health Center
F Goldstein PhD,
B Sommerfeld NP,
D Bernhard, S Perez-
Parra MD

Funding
Curtis Family Fund
Sartain Lanier Family
Foundation
Parkinson’s Foundation

Disclosures
Acadia, Adamas, Biogen,
Blackwell Futura, Demos,
Ipsen, Jazz, Sunovion,
Teva, Uptodate, US World
Meds, Lundbeck,
Medtronic, Neurocrine,
Prexton, Vaccinex, Voyager

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

SA Factor DO
Emory Neurology

Brain Health Center
F Goldstein PhD,
B Sommerfeld NP,
D Bernhard, S Perez-
Parra MD

Funding
Curtis Family Fund
Sartain Lanier Family
Foundation
Parkinson’s Foundation

Disclosures
Acadia, Adamas, Biogen,
Blackwell Futura, Demos,
Ipsen, Jazz, Sunovion,
Teva, Uptodate, US World
Meds, Lundbeck,
Medtronic, Neurocrine,
Prexton, Vaccinex, Voyager

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None

ME Hackney PhD
Emory General Medicine/
Geriatrics
Atlanta VAMC
Emory Rehabilitation
Medicine

Funding
VA R&D N0870W
Emory Center for Health in
Aging

Disclosures
None
I use a translational approach to study balance and falls in Parkinson’s disease

Epidemiology at the group level
- Large N for natural variability
- Real patients and statistics for clinical impact

Engineering at the patient level
- Simulations to show how pathology affects behavior
Falls are a major public health problem, especially in PD

- Falls are the main cause of accidental death in individuals ≥ 65 years old.\(^1\)

- PD increases fall risk (6 month risk ratio vs. matched healthy adults = 6.1 [2.5–15.1]),\(^2\) but causes remain poorly understood.\(^3,4\)

- A diverse group of PD patients, caregivers, and health professionals recently ranked balance problems and falls as their #1 research priority for PD.\(^5\)

\(^1\)Deandrea et al., Epidemiol 2010 (primarily USA/Europe); \(^2\)Bloem et al., J Neurol 2001
\(^3\)Grimbergen et al., Curr Opin Neurol 2004; \(^4\)Paul et al., Mov Disord 2013; \(^5\)Lord et al., Mov Disord 2016
Agenda

- Project 1: Can Freezing of Gait persist in the “ON” state? Results using a levodopa test
- Project 2: Leg (but not arm or neck) rigidity is associated with fall history in Parkinson’s disease
Freezing of Gait is poorly understood but a major contributor to falls

• “A brief arrest of stepping when initiating gait, turning, and walking straight ahead”¹

• ~2nd largest predictor of fall risk.²

• “ON” state FoG reported by patients (≈38%)³ has been called “pseudo-ON” or “levodopa-induced”⁴

¹McKay, Goldstein, Sommerfeld, Bernhard, Perez-Parra, Factor, BioRxiv 667071 [Preprint], 2019; ²Paul et al., Mov Disord 2013 ³Perez-Lloret et al., JAMA Neurol 2014; ⁴Fasano and Lang, Lancet Neurol 2015
Study 1 objectives

- Test whether presumed levodopa-unresponsive freezing of gait actually persists with adequate levodopa treatment.

- Test whether other parkinsonian features and responsiveness to levodopa varies across patients without FOG (NOFOG), with levodopa-responsive FOG (OFF-FOG) and with levodopa-unresponsive FOG (ONOFF-FOG).
We studied N=55 people with PD with a “levodopa challenge” paradigm

- Test 1: MDS-UPDRS-III “OFF” first thing in the morning, 12+ hours since last medication

- Break to take medications (≈400 mg levodopa equivalent, ≈150% of typical morning dose)

- Wait until patients reported effects (30 minutes-3 hours)

- Test 2: MDS-UPDRS-III “ON”
FOG can persist even in the presence of therapeutic acute levodopa challenge

Graph:
- **X-axis:** Improvement in MDS-UPDRS-III Total Score (%)
- **Y-axis:** Distribution of Improvement in MDS-UPDRS-III Total Score
- **Legend:**
 - Clinically-meaningful response
 - N=45
 - 47±15% [20-80%]
 - No clinically-meaningful response
 - N=10
 - 3±14% [-23-19%]

Improvement in MDS-UPDRS-III Total Score after levodopa challenge (%)
- **X-axis:** MDS-UPDRS-III Total OFF Score (/132)
- **Y-axis:** Improvement in MDS-UPDRS-III Total Score after levodopa challenge (%)
- **Legend:**
 - ONOFF-FOG
 - OFF-FOG
 - NOFOG
 - No clinically-meaningful response
 - N=19 cases of FOG after suprathreshold levodopa

Statistical Details:
- P = 0.73
People with ONOFF-FOG had otherwise typical parkinsonian features

**FOG group effect, P<0.05, RM-ANOVA

**FOG group effect, P<0.01

Significant medication state effect in all domains, except:
- Item III.12, Postural stability (absence of symptom)
- Item III.1, Speech (absence of effect)
- Item III.8, Leg agility (absence of effect)
- Item III.16, Kinetic tremor

Significant FoG group effect:
- Item III.11, FoG
- Item III.10, Gait
- Item III.12, Postural stability
- Item III.1, Speech
- Item III.8, Leg agility
- Item III.6, Hand pronation/supination

Significant FoG group × medication state interaction:
- Item III.11, FoG

Study 1 results and conclusions

- Levodopa challenge brought about a full “ON” state in 45/55 patients (19 ONOFF-FOG, 11 OFF-FOG, 15 NOFOG) – **most people responded**

- Highly significant association between serum levodopa level and total MDS-UPDRS-III score that was similar across groups – **everyone had PD**

- MDS-UPDRS-III scores and response to levodopa were similar across groups, consistent with PD (some significant effects of group were identified for other axial parkinsonian features) – **everyone had PD**

- **Conclusion**: FOG can persist in the full “ON” state brought about by ample dopaminergic dosing in PD. These data provide evidence that ONOFF-FOG is distinct from responsive freezing.
Agenda

- Project 1: Can Freezing of Gait persist in the “ON” state? Results using a levodopa test
- Project 2: Leg (but not arm or neck) rigidity is associated with fall history in Parkinson’s disease
MDS-UPDRS-III estimation with neural networks

MDS UPDRS-III Motor Exam Item 3.4: “Finger Tapping”

Red and yellow dots are tracked using a neural network

Distance between dots vs. time

DeepLabCut analysis courtesy Benjamin Fuhrer

DeepLabCut: Mathis et al., Nat Neurosci, 2018
Agenda

- Project 1: Can Freezing of Gait persist in the “ON” state? Results using a levodopa test
- Project 2: Leg (but not arm or neck) rigidity is associated with fall history in Parkinson’s disease
Falls are a major public health problem, especially in PD

- Falls are the main cause of accidental death in individuals ≥ 65 years old.¹

- PD increases fall risk (6 month risk ratio vs. matched healthy adults = 6.1 [2.5–15.1]),² but causes remain poorly understood.³,⁴

- A diverse group of PD patients, caregivers, and health professionals recently ranked balance problems and falls as their #1 research priority for PD.⁵

¹Deandrea et al., Epidemiol 2010 (primarily USA/Europe); ²Bloem et al., J Neurol 2001
³Grimbergen et al., Curr Opin Neurol 2004; ⁴Paul et al., Mov Disord 2013; ⁵Lord et al., Mov Disord 2016
Leg rigidity is an understudied risk factor for falls in PD

- One study\(^1\) found no association between whole body rigidity and falls.
- But, simulations suggest\(^2\) that leg rigidity may contribute to falls.

\(^1\)Latt et al., *Mov Disord* 2009; \(^2\)Bingham, Choi, Ting, *J Neurophysiol* 2011
We compared rigidity scores in N=216 people with PD with and without frequent falls.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Participants, N = 216</th>
<th>Nonfallers, n = 181</th>
<th>Fallers, n = 35</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>65.7 ± 9.7</td>
<td>65.5 ± 9.6</td>
<td>67.1 ± 10.3</td>
<td>0.35</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>78 (36)</td>
<td>60 (33)</td>
<td>18 (52)</td>
<td>0.04</td>
</tr>
<tr>
<td>Male</td>
<td>138 (64)</td>
<td>121 (67)</td>
<td>17 (48)</td>
<td></td>
</tr>
<tr>
<td>MoCA (/30)</td>
<td>24.7 ± 3.6^I</td>
<td>24.8 ± 3.6^2</td>
<td>24.2 ± 4.0^3</td>
<td>0.37</td>
</tr>
<tr>
<td>Education, y</td>
<td>16.1 ± 2.2^f</td>
<td>16.1 ± 2.3^g</td>
<td>16.2 ± 1.7</td>
<td>0.92</td>
</tr>
<tr>
<td>Disease duration, yr</td>
<td>7.4 ± 4.5</td>
<td>6.9 ± 4.1</td>
<td>9.9 ± 5.7</td>
<td><0.01</td>
</tr>
<tr>
<td>Age at onset, yr</td>
<td>58.3 ± 10.6</td>
<td>58.6 ± 10.1</td>
<td>57.3 ± 12.9</td>
<td>0.58</td>
</tr>
<tr>
<td>UPDRS-III score (/108)</td>
<td>22.0 ± 10.0</td>
<td>20.6 ± 9.2</td>
<td>29.5 ± 10.5</td>
<td><<0.01</td>
</tr>
<tr>
<td>FOG-Q total (/24)</td>
<td>4.5 ± 4.6</td>
<td>3.5 ± 3.9</td>
<td>9.6 ± 4.9</td>
<td><<0.01</td>
</tr>
<tr>
<td>FOG-GF total (/64)</td>
<td>8.6 ± 9.0</td>
<td>6.1 ± 6.2</td>
<td>21.1 ± 10.9</td>
<td><<0.01</td>
</tr>
<tr>
<td>Freezing of gait</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freezer</td>
<td>59 (27)</td>
<td>35 (19)</td>
<td>24 (69)</td>
<td><<0.01</td>
</tr>
<tr>
<td>Nonfreezer</td>
<td>157 (73)</td>
<td>146 (81)</td>
<td>11 (31)</td>
<td></td>
</tr>
</tbody>
</table>

Values are shown as either mean ± standard deviation or N (%). P values reflect univariate tests of central tendency (t tests or \(\chi^2 \) tests) between fallers and nonfallers.
We found that leg rigidity (but not arm or neck) is associated with falls in PD.

Odds Ratio for frequent falls, adjusted for age, sex, UPDRS-III, PD duration, FoG (N=216)

- **Lower Limb Rigidity Score, P=0.01**
 - 1.61 (1.10–2.37)

- **Total Rigidity Score, P=0.29**
 - 1.09 (0.93–1.27)

- **Neck Rigidity Score, P=0.99**
 - 1.00 (0.54–1.87)

- **Upper Limb Rigidity Score, P=0.14**
 - 0.71 (0.45–1.11)

McKay, Hackney, Factor, Ting, Mov Disord Clin Prac 2019
Study 2 results and conclusions

• To our knowledge, this is the first study to demonstrate an association between leg rigidity and falls in PD.

• In addition to common features on exam that raise concerns to neurologists that falls may be impending, leg rigidity may be a clinically observable and modifiable parkinsonian feature associated with falls.

• Rigid patients have increased muscle responses to passive movements\(^1,2\) and background muscle activity\(^3\) which may increase joint stiffness. This may be modifiable.

• Conclusion: Prospective studies of the relationships between rigidity and fall risk in PD could provide new information.

\(^1\)Berardelli et al., *J Neurol Neurosurg Psychiatry* 1983; \(^2\)Tatton and Lee, *Brain Res* 1975; \(^3\)Marusiak et al., *Clin Biomech* 2012
Agenda

• Project 1: Can Freezing of Gait persist in the “ON” state? Results using a levodopa test

• Project 2: Leg (but not arm or neck) rigidity is associated with fall history in Parkinson’s disease
Acknowledgments and disclosures

JL McKay PhD MSCR
Biomedical Engineering, Emory/Georgia Tech

Emory Physical Therapy Students
C Behling, M Bridges, M Brogan, M Ehrenheim, K Jacobs, M Kilgore, K Muldowney, S Nithiananda, E Rift, M Ryan, M Stanley, S Su, M Volden, H Williford

Emory Public Health Students
C Kiang, L Shafer

K25 Mentors
Thomas Wichmann, MD Klaus Jahn, MD

LH Ting PhD
Biomedical Engineering, Emory/Georgia Tech
Emory Rehabilitation Medicine

Neuromechanics Laboratory
K Lang, PhD, S Bong

Emory Physical Therapy Students
H Compton, M Harris, K Kramer, M McCall, J Perry, C Pope, C Roberts, A Ruedrich

SA Factor DO
Emory Neurology

Brain Health Center
F Goldstein PhD, B Sommerfeld NP, D Bernhard, S Perez-Parra MD

ME Hackney PhD
Emory General Medicine/Geriatrics
Atlanta VAMC
Emory Rehabilitation Medicine

Funding
VA R&D N0870W
Emory Center for Health in Aging

Disclosures
None

SA Factor DO
Acadia, Adamas, Biogen, Blackwell Futura, Demos, Ipsen, Jazz, Sunovion, Teva, Uptodate, US World Meds, Lundbeck, Medtronic, Neurocrine, Prexton, Vaccinex, Voyager

LH Ting PhD
NIH R01HD046922
NIH R21HD075612

ME Hackney PhD
NIH K25HD086276

Disclosures
None

Disclosures
None

ME Hackney PhD

Funding

Disclosures
None