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The mechanisms underlying associations between cognitive set shifting impairments
and balance dysfunction are unclear. Cognitive set shifting refers to the ability to flexibly
adjust behavior to changes in task rules or contexts, which could be involved in flexibly
adjusting balance recovery behavior to different contexts, such as the direction the body
is falling. Prior studies found associations between cognitive set shifting impairments
and severe balance dysfunction in populations experiencing frequent falls. The objective
of this study was to test whether cognitive set shifting ability is expressed in successful
balance recovery behavior in older adults with high clinical balance ability (N = 19,
71 ± 7 years, 6 female). We measured cognitive set shifting ability using the Trail
Making Test and clinical balance ability using the miniBESTest. For most participants,
cognitive set shifting performance (Trail Making Test B-A = 37 ± 20 s) was faster than
normative averages (46 s for comparable age and education levels), and balance ability
scores (miniBESTest = 25 ± 2/28) were above the threshold for fall risk (23 for people
between 70 and 80 years). Reactive balance recovery in response to support-surface
translations in anterior and posterior directions was assessed in terms of body motion,
muscle activity, and brain activity. Across participants, lower cognitive set shifting ability
was associated with smaller peak center of mass displacement during balance recovery,
lower directional specificity of late phase balance-correcting muscle activity (i.e., greater
antagonist muscle activity 200–300 ms after perturbation onset), and larger cortical N1
responses (100–200 ms). None of these measures were associated with clinical balance
ability. Our results suggest that cognitive set shifting ability is expressed in balance
recovery behavior even in the absence of profound clinical balance disability. Specifically,
our results suggest that lower flexibility in cognitive task performance is associated with
lower ability to incorporate the directional context into the cortically mediated later phase
of the motor response. The resulting antagonist activity and stiffer balance behavior may
help explain associations between cognitive set shifting impairments and frequent falls.
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INTRODUCTION

Cognitive impairment is associated with balance dysfunction, but
it is unclear whether or how cognitive ability relates to balance
recovery behavior in relatively high-functioning preclinical
populations. Subtle cognitive impairments in executive function
(Muir et al., 2012), attention, and memory are associated with
clinical balance impairments (Tangen et al., 2014) and predict
the first (Herman et al., 2010) and recurring falls in older adults
(Gleason et al., 2009; Mirelman et al., 2012). However, it is
unclear whether subtle differences in cognitive ability in the
absence of clinically detectable balance dysfunction are associated
with changes in balance control. Associations between cognitive
function and balance control could provide mechanistic insight
into findings that cognitive engagement in balance control
increases with age (Rankin et al., 2000), fall history (Shumway-
Cook et al., 1997), and fall risk (Lundin-Olsson et al., 1997).
Here, we focus on individual differences in cognitive set shifting
ability (i.e., the ability to flexibly adjust a behavior to changes in
task rules or contexts), which have previously been associated
with clinical balance dysfunction (Tangen et al., 2014), fall
history (McKay et al., 2018), and fall risk (Herman et al.,
2010). We investigate balance recovery behavior in terms of
body motion, muscle activity, and brain activity evoked by a
sudden balance disturbance, in contrast to prior studies that used
clinical instruments and falls tracking, which are less applicable
to preclinical populations. Identifying associations between
cognitive ability and balance recovery behavior in preclinical
populations could provide insight into underlying mechanisms
for balance impairments that could serve as therapeutic targets
for rehabilitation prior to occurrence of a fall.

Cognitive set shifting is an executive function that pertains
to the ability to flexibly adjust behavior to changes in task
rules or contexts, but its potential role in balance behavior is
unclear. The Trail Making Test is a common pen and paper
assessment of cognitive set shifting, consisting of two parts.
In Part A, a participant must rapidly draw lines to connect
dots in numerical order, relying on sustained attention, working
memory, visuomotor search, and dexterity (Sanchez-Cubillo
et al., 2009). In Part B, the task is altered to incorporate
switching between numbers and letters (1-A-2-B-3-C. . .), thereby
adding in a component of cognitive set shifting (Sanchez-Cubillo
et al., 2009). Scoring the difference in time to complete Part
B – Part A accounts for the overlapping motor and cognitive
aspects, leaving a relatively pure measure of cognitive set shifting
(Sanchez-Cubillo et al., 2009). However, the construct of set
shifting inherently includes an increased working memory load
to maintain and switch between two rule sets, as well as response
selection and inhibition to select the response according to the
current rule set while suppressing the response to the previous
rule set (Koch et al., 2010). Because the Trail Making Test is
so far removed from standing balance behavior, it is unclear
why it has been repeatedly associated with advanced balance
impairments (Herman et al., 2010; Tangen et al., 2014; McKay
et al., 2018). However, if the neural mechanisms for cognitive set
shifting assessed by the Trail Making Test are involved in balance

control, then variation in cognitive set shifting ability should be
expressed in successful balance recovery behavior before people
begin experiencing frequent falls.

Similar to effective cognitive control, successful balance
recovery behavior requires quick and flexible execution of a
contextually appropriate behavior. Support-surface translational
perturbations rapidly displace the base of support (i.e., the
feet) relative to the body’s center of mass, requiring a rapid
neural and mechanical reaction to prevent a fall. Effective
balance recovery behavior involves directionally specific motor
responses, with muscles showing preferential activation in
response to perturbation directions in which they can generate
torque to counteract center of mass displacement (Henry et al.,
1998; Torres-Oviedo and Ting, 2007). This type of directional
specificity is reduced in people with balance impairments
(Lang et al., 2019), resulting in simultaneous agonist-antagonist
cocontraction, which increases joint stiffness, but ultimately
limits joint torques as the actions of the agonist and antagonist
muscles partially resist one another (Damiano, 1993). Although
cocontraction is common when learning new or complex motor
skills and can be beneficial in some contexts (Damiano, 1993),
its association to balance impairments suggests it is not an ideal
strategy for balance recovery behavior (Lang et al., 2019). It
has been suggested that cognitive flexibility, a broader construct
containing cognitive set shifting, may be needed to quickly adjust
behavior to unpredictable demands, including the use of feedback
from the body or environment to appropriately react to a sudden
displacement of the body’s center of mass (Pieruccini-Faria et al.,
2019). Here, we test whether cognitive set shifting ability is
associated with the ability to modulate muscle activity between
balance perturbations that displace the body’s center of mass in
opposite directions.

Testing different phases of the motor response for associations
to cognitive ability could provide insight into different
mechanisms by which cognitive function may overlap with
balance recovery behavior. A sudden balance perturbation
evokes a relatively stereotyped brainstem-mediated balance-
correcting motor response at ∼100 ms via integrated sensory
inputs reflecting the task-level goal of upright posture, and not
the local stretch of individual muscles (Nashner, 1979; Horak
and Nashner, 1986; Dietz et al., 1987; Safavynia and Ting,
2013). While this early response is subcortically mediated, it
can be influenced by pre-perturbation cognitive state, including
arousal (Carpenter et al., 2004), expectations (Horak et al.,
1989), and intentions (McIlroy and Maki, 1993; Burleigh et al.,
1994; Burleigh and Horak, 1996; Weerdesteyn et al., 2008)
in ways that may depend on descending cortical influence
in anticipation of an upcoming balance disturbance. More
variable motor responses occur at longer latencies (> 150 ms)
that can incorporate cortically mediated motor responses to
the balance disturbance (Jacobs and Horak, 2007). Cognitive
dual task interference is limited to this later phase of the
motor response, suggesting only the later phase depends on
online cognitive processing (Rankin et al., 2000). If cognitive
set shifting is associated with directional specificity in the
early phase of the response, this would implicate cognitive
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set shifting in the maintenance of “central set,” which refers
to the ability of the central nervous system to preselect the
gain of stimulus-evoked behaviors in consideration of arousal,
expectations, and intentions (Prochazka, 1989). If cognitive set
shifting is associated with directional specificity only in the later
phase, this would implicate cognitive set shifting in cortically
mediated reactions to the balance perturbation, which can
incorporate incoming sensory information into decisions about
how to react.

Balance perturbations also evoke a cortical response that
is associated with balance ability and cognitive processing,
but it is unknown whether this cortical response reflects
individual differences in cognitive ability. A cortical response,
termed the “N1” for the first negative peak in the evoked
electroencephalography signal, occurs in the supplementary
motor area ∼150 ms after a balance disturbance (Marlin et al.,
2014; Mierau et al., 2015). We have previously suggested that
the cortical N1 may reflect compensatory cortical engagement
in balance recovery because it is enhanced in young adults
with lower balance ability (Payne and Ting, 2020b) and
on trials in which compensatory steps are taken (Payne
and Ting, 2020a). The cortical N1 is also influenced by
cognitive processes including attention (Quant et al., 2004;
Little and Woollacott, 2015), perceived threat (Adkin et al.,
2008; Mochizuki et al., 2010), and predictability (Adkin et al.,
2006, 2008; Mochizuki et al., 2008, 2010) and may therefore
reflect cognitive-motor interactions. The possibility that the
N1 reflects cognitive-motor interactions is further supported
by its localization to the supplementary motor area (Marlin
et al., 2014; Mierau et al., 2015), which is thought to mediate
interactions between cognitive and motor processes by mediating
interactions between neighboring prefrontal and motor cortical
areas (Goldberg, 1985). Although investigations of the cortical
N1 in older populations have been limited (Duckrow et al.,
1999; Ozdemir et al., 2018), the N1 may be ideally suited
for investigating relationships between cognitive and motor
impairments with aging. Here, we test whether the cortical
N1 is associated with individual differences in cognitive set
shifting ability.

We investigated whether individual differences in cognitive set
shifting ability were associated with perturbation-evoked balance
recovery behavior and cortical activity in an older population
with relatively high balance function to gain insight into possible
mechanisms linking balance and cognitive function. We assessed
clinical balance ability with the mini Balance Evaluation Systems
Test (miniBESTest) (Magnani et al., 2020) and cognitive set
shifting ability with the Trail Making Test (Tombaugh, 2004;
Sanchez-Cubillo et al., 2009). We tested these ability measures for
association with perturbation-evoked balance recovery behavior,
including whole body stiffness, directional specificity of ankle
muscle activity in early and late phases of the motor response,
and the evoked cortical N1 response. We hypothesized that
cognitive set shifting shares underlying mechanisms with balance
control. We therefore predicted that inter-individual variation
in cognitive set shifting ability would be associated with
balance recovery behavior prior to the development of clinically
significant balance disorders.

MATERIALS AND METHODS

Participants
Nineteen older adults (age 71 ± 6, 6 female) participated in this
study. Written consent was obtained from all participants after
a detailed explanation of the protocol according to procedures
approved by the Emory University Institutional Review Board.

Participants were recruited from Emory University and the
surrounding community. Adults over 55 years of age were
screened for the following inclusion criteria: vision can be
corrected to 20/40 or better with corrective lenses, no history
of stroke or other neurologic condition, no musculoskeletal
conditions or procedures that cause pain or limit mobility of the
legs, ability to stand unassisted for at least 15 min, and cognitive
ability to provide informed consent. Potential participants were
excluded for prior experience on the perturbation platform. Study
data were collected and managed using a Research Electronic
Data Capture (REDCap) database hosted at Emory University
(Harris et al., 2009, 2019).

Balance Ability
The miniBESTest1 was used as a measure of balance ability
(Magnani et al., 2020) which assesses anticipatory postural
control, reactive postural control, sensory orientation,
and dynamic gait.

Set Shifting Ability
The set shifting ability score was measured as the difference
in time to complete Part B minus Part A of the Trail Making
Test (Sanchez-Cubillo et al., 2009; McKay et al., 2018). Part A
requires participants to quickly connect sequentially numbered
dots (1-2-3, etc.). Part B is similarly formatted but requires
participants to shift between numbers and letters (1-A-2-B, etc.).
A greater difference in time to complete Part B compared to
Part A indicates slower cognitive set shifting and therefore lower
cognitive set shifting ability.

Overall Cognitive Ability
The Montreal Cognitive Assessment (MoCA2) was given as
a rapid assessment of overall cognitive ability that assesses
cognitive domains including executive function, attention, and
memory (Nasreddine et al., 2005). Participants also self-reported
the number of years of education. These data were collected as
potential covariates so we could test whether overall cognitive
ability confounds more specific associations to cognitive set
shifting and were not considered for exclusion, as a range of
cognitive abilities was necessary to achieve the goals of this study.

Perturbations
Participants were exposed to 48 translational support-surface
perturbations of unpredictable timing, direction, and magnitude
using a custom perturbation platform (Payne et al., 2019a).
Perturbations were evenly divided between forward and

1www.bestest.us
2www.mocatest.org
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backward directions, and three perturbation magnitudes,
which will be referred to as small, medium, and large. The
small perturbation (0.15 g, 11.1 cm/s, 5.1 cm) was identical
across participants. Medium (0.21–0.22 g, 15.2–16.1 cm/s,
7.0–7.4 cm) and large (0.26–0.29 g, 19.1–21.0 cm/s, 8.9–
9.8 cm) perturbations were linearly scaled down from reference
magnitudes (medium: 0.22 g, 16.7 cm/s, 7.7 cm; large: 0.30 g,
21.8 cm/s, 10.2 cm) by multiplying perturbation acceleration,
velocity, and displacement characteristics by a scaling factor
linearly related to the participant’s height [Eq. (1)] to account
for the effect of participant height and deliver perturbations
that are mechanically similar across body sizes (Payne et al.,
2019a). The 48 perturbation series was divided into 8 blocks,
each containing one replicate of each unique perturbation. Three
different block-randomized perturbation orders were used across
participants to randomize any possible effects of trial order. The
perturbations for an example participant are shown in Figure 1.

Perturbation Scaling Factor =
height + 80 cm

280 cm
(1)

Participants were instructed to cross their arms across their chest,
focus their vision on a fixed location at eye-level approximately
4.5 meters away, and to try to recover balance without taking a

step. The experimenter monitored continuous electromyography
(EMG) and electroencephalography (EEG) activity to ensure
activity had returned to quiet baseline levels prior to the onset
of the next perturbation. Seated rest breaks were taken after
15 min of perturbations, or more frequently at the request of
the participant or if the participant displayed signs of fatigue or
loss of concentration. Excluding rest breaks, inter-trial-intervals,
from perturbation onset to perturbation onset were 23 ± 11 s.
Trials in which participants took steps (8% of all trials) were
excluded from analysis.

Body Motion
Motion of the body’s center of mass was tracked using a 10-
camera Vicon Nexus 3D motion analysis system. Reflective
markers placed on areas of the body including the head, neck,
hips, knees, ankles, and feet were used to create a model of
the body, and Vicon’s plug-in-gait model was used to estimate
the body’s center of mass. Body motion was referenced to
motion of the support-surface to assess whole body stiffness
in terms of the deviation of the center of mass from the base
of support, where stiffer individuals will move less in response
to the same perturbation. Body motion was then quantified
for each participant in each trial type as the peak deviation of

FIGURE 1 | Balance perturbations. (A) The translational support-surface balance perturbation is depicted along with a schematic displaying hierarchical levels of
control of the perturbation-evoked muscle activity. (B) Perturbation kinematics and the measured response variables are shown for an example participant with
forward movements of the floor represented in magentas and backward movements of the floor represented in blues, with darker colors for larger perturbations.
Perturbation onset is indicated with the dashed vertical line. Solid vertical lines indicate the time window of 100–200 ms, in which the cortical N1 and the early phase
of muscle activity were assessed. The shaded gray area indicates the time window of 200–300 ms, in which the late phase of muscle activity was assessed.
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the center of mass from the base of support along the axis of
perturbation motion in data averaged across perturbations for
each direction and magnitude.

Muscle Activity
Surface EMGs (Motion Lab Systems, Baton Rouge, LA) were
collected from tibialis anterior and soleus muscles, which are
an agonist-antagonist pair of ankle muscles activated in forward
and backward support-surface perturbations. EMG activity was
collected using silver silver-chloride bipolar electrodes with 2 cm
interelectrode spacing (Norotrode 20, Myotronics, Inc.) and
sampled at 1000 Hz after an online analog 500 Hz low-pass filter.
Skin was scrubbed with alcohol swabs and shaved if necessary
prior to electrode placement.

Muscle activity was epoched into 2.4 s intervals, beginning
400 ms before perturbation onset. Epochs were 35 Hz high-pass
filtered with a third-order zero-lag Butterworth filter, mean-
subtracted, half-wave rectified, and then 40 Hz low-pass filtered.
To avoid issues with normalization that could occur when
averaging muscle activity across the left and right legs, only the
muscle activity for the left leg was analyzed. As only non-stepping
behaviors were analyzed in forward and backward perturbations,
muscle activity is expected to be similar across left and right legs.

Muscle activity was assessed in two time bins of interest. This
included an early (100–200 ms) time bin, which is expected to
primarily contain involuntary brainstem-mediated activity, and
a late (200–300 ms) time bin, in which cortical contributions to
muscle activation can appear (Figure 1).

Antagonist muscle activation was quantified relative to agonist
muscle activity (Lang et al., 2019) within each perturbation
magnitude as a measure of directional specificity, or motor set
shifting, in terms of how the same muscle is activated differently
across perturbation directions. EMG activity for each muscle
was averaged within each time bin for each of the perturbation
magnitudes and directions. Then, EMG activity was quantified
according to Equation 2, which takes the absolute value of
the difference in EMG activity between forward and backward
perturbation directions (i.e., agonist activity – antagonist activity)
and divides it by the larger of the two values (i.e., agonist activity).
This results in a value between 0 and 1, where values near
1 indicate nearly exclusive agonist activity, or high directional
specificity, and values near zero indicate nearly identical agonist
and antagonist activity, or low directional specificity.

Specificity =
|EMG

(
forward

)
− EMG

(
backward

)
|

max[EMG
(
forward

)
, EMG

(
backward

)
]

=
agonistEMG− antagonistEMG

agonistEMG
(2)

Cortical Activity
Electroencephalography (EEG) data were collected during the
perturbation series using thirty-two active electrodes (ActiCAP,
Brain Products, Germany) placed according to the international
10–20 system, with the exception of two electrodes placed on
the skin over the mastoid bones behind the ears for offline
re-referencing. The electrodes were prepared with conductive

electrode gel (SuperVisc 100 gr. HighViscosity Electrolyte-Gel for
active electrodes, Brain Products) using a blunt-tipped needle,
which was also used to rub the scalp to improve signal quality.
Impedances for the Cz and mastoid electrodes were generally
below 10 kOhm before the start of data collection.

Active electrodes are specifically designed to minimize
movement artifacts by pre-amplifying the signal at the electrode
before the signal passes through any cables. Movement
artifacts were further minimized by the nature of the balance
perturbations acting at the participants’ feet, evoking a cortical
N1 response prior to significant head movement (Payne et al.,
2019a), and ensuring that perturbations were only delivered
during a stable EEG baseline as described above.

However, it was necessary to address spontaneous blinks and
eye movement, which can occur during the evoked response and
affect the measured outcomes. To subtract vertical eye movement
and blink artifacts, electrooculography (EOG) data were collected
with bipolar passive electrodes (E220x, Brain Products) vertically
bisecting the right pupil and referenced to the forehead. Prior
to placement, the EOG electrodes were prepared with high-
chloride abrasive gel (ABRALYT HiCl 250 gr., High-chloride-
10% abrasive electrolyte gel, Brain Products) and the skin was
scrubbed with an alcohol swab. EEG and EOG data were sampled
at 1000 Hz on an ActiCHamp amplifier (Brain Products) with
a 24-bit A/D converter and an online 20 kHz anti-aliasing low-
pass filter.

Electroencephalography (EEG) data were 1 Hz high-pass
filtered offline with a third-order zero-lag Butterworth filter,
mean-subtracted within channels, and then low-pass filtered
at 25 Hz. Data at the Cz electrode were re-referenced to
the average of the two mastoid electrodes and epoched into
2.4 s segments beginning 400 ms before perturbation onset.
Electrooculography data were similarly filtered and segmented
without re-referencing. The Gratton et al. (1983) algorithm was
applied as described in Payne et al. (2019a) to remove blinks and
eye movement artifacts through a serial regression-subtraction
approach. Cz epochs were then averaged across trials within
each trial type (7 ± 1 trials per subject per condition) and
baseline subtracted using a baseline period of 50–150 ms before
perturbation onset. Cortical N1 response amplitudes were then
quantified as the negative of the most negative amplitude (µV,
such that higher values indicate a larger component peak) at
the Cz electrode between 100 and 200 ms after perturbation
onset (Figure 1).

The decision to analyze a single electrode where the cortical
N1 response is the largest, rather than a more complex analysis,
such as independent components analysis, was based on the goal
of identifying a clinically feasible and reproducible biomarker
of brain engagement during balance recovery. However, as
the cortical N1 may arise due to synchronization of multiple
component sources (Peterson and Ferris, 2018, 2019; Varghese
et al., 2019), this single electrode approach cannot clarify the
phenomena underlying the cortical N1 response.

Statistical Analyses
Simple linear regressions were used to test for associations
between pairs of study variables. Specifically, linear regressions
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were used to test set shifting ability scores as a predictor
of: N1 amplitudes, peak center of mass displacements, and
directional specificity of soleus and tibialis anterior muscle
activity. Additional linear regressions were used to test each of
these variables as a predictor of MiniBESTest scores. Variables
that were not normally distributed as determined by Shapiro-
Wilk test p-values < 0.05 were transformed to a normal
distribution prior to regression using boxcox.m in MATLAB.
Parameter estimates for the regression slopes were compared
against the hypothesized value 0 with two-sided t-tests using
PROC GLM in SAS. Figures display untransformed data with
p-values and R2 values obtained from the adjusted variables. For
significant associations, we also report Cohen’s F2 (Cohen, 1992)
as a measure of effect size.

All tests for association with N1 amplitudes and peak
center of mass motion were performed separately across the
two perturbation directions and three perturbation magnitudes,
and tests for association with EMG activity were performed
separately across the three perturbation magnitudes. Associations
were examined for consistency across testing conditions via
visual inspection of regression plots and tabulated regression
coefficients. Simple linear regressions that yielded significant
associations were further tested for robustness to potential
confounding variables, including age, sex, height, weight,
overall cognition scores, years of education, and balance ability
scores. Specifically, each significant regression was retested in a
multivariate regression with each of the potential confounding
variables added, one at a time, as an additional predictor in
the model to confirm that the associations were insensitive to
adjustment by the potential confound.

RESULTS

Demographic characteristics of the participants are shown in
Table 1. Overall, participants had high clinical balance ability
and cognitive set shifting ability. On the clinical balance test,
most participants scored above the fall-risk threshold of 23
for adults between 70 and 80 years old (Magnani et al., 2020)
(Figure 2). Similarly, most participants performed better on the
Trail Making Test (B-A) than the average of 46 s that would be
expected for adults between 70 and 80 years old with 12 + years
of education (Tombaugh, 2004).

TABLE 1 | Participant characteristics.

N 19

Sex 6F, 13M

Age 71.0 ± 6.5

Height (cm) 174.9 ± 10.0

Weight (kg) 78.7 ± 16.3

Trail making test (part A, seconds) 23.8 ± 7.7

Trail making test (part B, s) 60.8 ± 25.4

Set shifting (part B-A, s) 37.0 ± 19.7

Overall cognition (MoCA,/30) 26.3 ± 3.4

Years of education 16.7 ± 1.5

Balance ability (miniBESTest,/28) 24.6 ± 2.1

FIGURE 2 | Clinical balance scores are plotted against cognitive set shifting
performance, showing no association. Most participants scored above the
suggested fall risk cutoff score of 23 for people between 70 and 80 years old
on the miniBESTest (Magnani et al., 2020). Most participants also completed
the Trail Making Test (B-A) faster than the average of 46 s that would be
expected by their age and education from normative data (Tombaugh, 2004).

Clinical balance ability scores were not associated with
any other study variable. Specifically, miniBESTest scores
were not associated with cognitive set shifting (p = 0.256,
Figure 2), the peak amplitude of center of mass displacement
(p > = 0.123 across all perturbation magnitudes and directions,
Figure 3), antagonist activity of the soleus (all p > = 0.078,
Supplementary Figures) or tibialis anterior (all p > = 0.500,
Supplementary Figures), or the peak amplitude of the cortical N1
response (all p > = 0.566, Supplementary Figures).

Lower cognitive set shifting ability was associated with stiffer
responses to perturbations (Figure 3). Specifically, individuals
who took longer to complete the cognitive set shifting task had
smaller peak amplitudes of center of mass displacement with
respect to the base of support in all perturbation magnitudes
in both perturbation directions (forward perturbations: small
p = 0.002 R2 = 0.44 Cohen’s F2 = 0.77, medium p = 0.001
R2 = 0.48 F2 = 0.92, large p = 0.003 R2 = 0.42 F2 = 0.72; backward
perturbations: small p < 0.001 R2 = 0.49 F2 = 0.96, medium
p < 0.001 R2 = 0.52 F2 = 1.07, large p < 0.001 R2 = 0.66 F2 = 1.98).
Set shifting ability scores remained a significant predictor of
center of mass displacement in all perturbation magnitudes and
directions when potential confounding variables of age, sex,
height, weight, overall cognition, education, and balance ability
scores were included in the models (Supplementary Material).

Lower cognitive set shifting ability was associated with more
antagonist activity in the late phase (200–300 ms) of soleus
muscle activation (Figure 4). Specifically, individuals who took
longer to complete the cognitive set shifting task displayed
less directional specificity of late phase (200–300 ms) soleus
activity (small perturbation p = 0.010, R2 = 0.33 F2 = 0.50,
medium p = 0.007, R2 = 0.35 F2 = 0.55, large p = 0.004
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FIGURE 3 | Slower cognitive set shifting was associated with stiffer behavioral responses to perturbation. (A) Center of mass displacements are shown for two
individuals with more (left) or less (right) whole body motion for each of the perturbation types, with forward movements of the floor (resulting in backward leaning
posture) represented in magentas and backward movements of the floor represented in blues, with darker colors for larger perturbations. (B) Peak center of mass
displacements are plotted against cognitive set shifting scores (middle) and clinical balance scores (bottom) for forward (left) and backward (right) perturbations for
each perturbation magnitude.

R2 = 0.39 F2 = 0.64). Set shifting ability scores remained
a significant predictor of directional specificity of late phase
soleus activity in all perturbation magnitudes when potential

confounding variables of age, sex, height, weight, overall
cognition, education, and balance ability scores were included in
the models (Supplementary Material). In contrast, set shifting
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FIGURE 4 | Slower cognitive set shifting was associated with lower directional specificity in the late phase of muscle activation. Condition-averaged muscle activity is
shown for (A) soleus and (B) tibialis anterior muscles for example participants with higher or lower directional specificity scores. Muscle activity evoked by forward
movements of the floor (resulting in backward leaning posture) is represented in magentas and activity evoked by backward movements of the floor is represented in
blues, with darker colors for larger perturbations. Antagonist activity (i.e., soleus activity in forward perturbations and tibialis anterior activity in backward
perturbations) is shaded for clarity. Vertical lines at 100 ms, 200 ms, and 300 ms mark the bounds of the time bins of interest. The later (200–300 ms) time bin is
shaded in all panels. Directional specificity is plotted against cognitive set shifting scores for the (C) soleus muscle and (D) tibialis anterior muscle in each
perturbation magnitude for early (100–200 ms) and late (200–300 ms) time bins.

ability was not associated with directional specificity of the early
automatic phase (100–200 ms) of soleus muscle activation (small
perturbation p = 0.121, medium p = 0.409, large p = 0.156).

Limited associations between cognitive set shifting ability and
tibialis anterior muscle activity (Figure 4) were not robust to
the inclusion of potential confounding variables. Specifically,
individuals who took longer to complete the cognitive set

shifting task displayed lower directional specificity of late phase
(200–300 ms) tibialis anterior muscle activation in medium
(p = 0.018 R2 = 0.29 F2 = 0.40) and large (p = 0.030 R2 = 0.25
F2 = 0.33) perturbations, but only a trend was observed in
small (p = 0.068 R2 = 0.18 F2 = 0.22) perturbations. However,
these associations were not robust to the inclusion of potential
confounding variables (Supplementary Material). Specifically,
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set shifting scores were no longer a significant predictor of
directional specificity of late phase tibialis anterior muscle
activation in the medium perturbation magnitude upon the
inclusion of sex (p = 0.053) or overall cognition (p = 0.096)
into the model, and significance was similarly lost in the large
perturbation magnitude upon the inclusion of height (p = 0.058),
sex (p = 0.110), or overall cognition (p = 0.077) into the
model. Set shifting ability scores were not significant predictors
of directional specificity of the early automatic phase (100–
200 ms) of tibialis anterior muscle activation (small perturbation
p = 0.611, medium p = 0.240, large p = 0.379).

Lower cognitive set shifting ability was associated with
larger perturbation-evoked cortical N1 responses (Figure 5).
Specifically, individuals who took longer to complete the
cognitive set shifting task had larger cortical N1 peak amplitudes
in response to all perturbation magnitudes in both perturbation
directions (forward perturbations: small p = 0.004 R2 = 0.40
F2 = 0.65, medium p = 0.002 R2 = 0.44 F2 = 0.80, large p = 0.003
R2 = 0.41 F2 = 0.69; backward perturbations: small p < 0.001
R2 = 0.60 F2 = 1.48, medium p = 0.004 R2 = 0.39 F2 = 0.64, large
p = 0.016 R2 = 0.30 F2 = 0.42). Set shifting ability scores remained
a significant predictor of N1 peak amplitudes in all perturbation
magnitudes and directions when potential confounding variables
of age, sex, height, weight, overall cognition, education, and
balance ability scores were included in the models, with one
exception (Supplementary Material). This exception was in large
backward perturbations, where set shifting ability fell below
significance as a predictor of N1 amplitudes upon inclusion of
sex into the model (p = 0.055).

DISCUSSION

Our results suggest that cortically mediated reactions to a balance
disturbance may share common mechanisms with cognitive set
shifting ability in older adults with relatively high balance ability.
While prior studies have linked set shifting impairments to
severe balance dysfunction and frequent falls (Herman et al.,
2010; Tangen et al., 2014; McKay et al., 2018), our results
demonstrate that set shifting ability is expressed in successful
balance recovery behavior even in the absence of profound
clinical balance disability. Individuals with lower cognitive set
shifting ability had stiffer whole-body behavior in terms of
lower center of mass displacement after balance perturbations,
which may be caused by excessive agonist-antagonist coactivation
related to difficulty incorporating the directional context into the
cortically mediated phase of the motor response. The associations
between cognitive set shifting and the late phase of the motor
response as well as the larger cortical N1 responses both suggest
that cognitive set shifting shares common mechanisms with the
cortically mediated reaction to the perturbation, rather than
cortical preparatory activity, which would have been observed in
the early phase of the motor response. The associations between
balance and cognitive set shifting cannot be explained by age,
as all associations remained significant when accounting for age.
Our data suggest that cognitive set shifting ability may indicate
variation in balance control that is not yet detectable in the

FIGURE 5 | Slower cognitive set shifting was associated with larger
perturbation-evoked cortical N1 responses. (A) Cortical responses are shown
at the Cz electrode for eight different participants (averages across all trials) as
examples along with their set shifting scores. The gold box highlights the
window of 100–200 ms, in which the N1 amplitude was quantified.
(B) Cortical N1 response amplitudes are plotted against cognitive set shifting
scores in each of the perturbation conditions. Forward movements of the floor
(resulting in backward leaning posture) are represented in magentas and
backward movements of the floor are represented in blues, with darker colors
for larger perturbations.
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clinical balance test, but it remains to be tested whether cognitive
set shifting ability could serve as an earlier predictor of falls in
preclinical populations. Earlier detection of changes in balance
control could enable treatment when these changes are more
amenable to adaptation (Zaback et al., 2019). These findings
warrant further investigation of cortical engagement in balance
recovery behavior guided by cognitive set shifting ability rather
than just clinical balance ability, which may help explain why
balance rehabilitation can be enhanced by cognitive training
(Hagovska and Olekszyova, 2016).

These findings suggest that cognitive set shifting ability is
expressed in balance recovery behavior earlier than previously
suggested. The clinical balance test (Balance Evaluation Systems
Test, or BESTest, later shortened to the miniBESTest) was
designed to distinguish between levels of balance function and
fall risk in people seeking treatment for balance-related disability
(Horak et al., 2009; Franchignoni et al., 2010). The miniBESTest
was not designed to measure subtle differences in balance
recovery behavior in preclinical balance function, which may
explain why we did not find associations between clinical balance
ability and any other variable in the present study. By assessing
more precise neuromechanical metrics of balance control in
response to balance destabilization, we found that cognitive
set shifting ability was associated with stiffer balance recovery
mechanics and antagonist muscle activity that were not observed
in the clinical balance test. While the majority of our participants
had a high level of balance function, we chose not to exclude
people with mild cognitive impairment to allow for variation
in cognitive function to relate to balance recovery behavior.
Although our cognitive set shifting scores were typical given
the age and relatively high level of education of our participant
cohort (Giovagnoli et al., 1996; Tombaugh, 2004; Steinberg et al.,
2005), this should not be misinterpreted as an indication that
our participants are free of the cognitive decline that would
be expected for their ages. Indeed, roughly a quarter of our
participants (5 of 19) scored below the cutoff value for mild
cognitive impairment on the Montreal Cognitive Assessment
(Nasreddine et al., 2005). In any case, most of the observed
associations between cognitive set shifting and perturbation-
evoked balance recovery behavior remained significant when
accounting for age, education, overall cognition, and most of the
other potentially confounding variables considered, indicating
that our associations are specific to cognitive set shifting and not
better explained by these other factors.

Difficulty shifting cognitive sets may extend to a related
difficulty shifting motor sets in the cortically mediated phase
of balance recovery behavior. People with lower cognitive set
shifting ability had stiffer whole-body mechanics as evidenced
by less center of mass motion in response to balance
perturbations. While greater resistance to a balance disturbance
would seem to suggest greater stability (Horak et al., 2005),
the accompanying increase in antagonist activity, which is
associated with clinical balance impairments (Lang et al.,
2019), suggests this biomechanical stiffness does not reflect
better balance control. Our directional specificity measure of
antagonist activity was originally developed as a proxy measure
for simultaneous cocontraction of agonist-antagonist muscle

pairs that overcomes issues of comparing activity levels between
muscles by instead comparing the activity of an individual muscle
between agonist and antagonist contexts (Lang et al., 2019).
However, because this measure compares the shift in activity
of individual muscles between agonist and antagonist contexts,
it could also be considered as a measure of motor set shifting.
Directional specificity of the late phase of the soleus muscle
was robustly associated with cognitive set shifting ability across
perturbation magnitudes and robust to all potential confounds,
but associations with the late phase of the tibialis anterior muscle
were limited to larger perturbations and may be explained by
lower overall cognition or female sex. The majority of our
findings displayed a large effect size (i.e., Cohen’s F2 > 0.35),
as smaller effects would require a larger sample size to observe.
While these muscles are a small fraction of the muscle activity
contributing to the overall balance recovery behavior, our data
provide evidence that difficulty shifting cognitive sets may extend
to a related difficulty shifting motor sets between perturbation
directions in the cortically mediated phase of the motor response.
A relationship between cognitive and motor set shifting is further
supported by a recent finding that older adults with difficulty
shifting cognitive sets had a related difficulty shifting between
locomotor patterns on a split belt treadmill (Sombric and Torres-
Oviedo, 2021). Because the motor set shifting association was not
observed in the early phase of the perturbation-evoked motor
response, it is unlikely that the influence of pre-perturbation
cognitive state, such as anticipation, readiness, or arousal, on
the brainstem-mediated response has overlapping mechanisms
with cognitive set shifting. The association of motor set shifting
during the later cortically mediated phase of the motor response
suggests that instead the cortically mediated reaction of the
perturbation may have overlapping mechanisms with cognitive
set shifting, which is further supported by the enhanced cortical
N1 responses.

Our findings suggest the cortical N1 has overlapping
mechanisms with cognitive set shifting, and prior work
linking the N1 to attention and perceived threat may help
explain the subsequent antagonist activity. While prior studies
have shown within-subjects changes in the cortical N1 with
cognitive processes including attention (Quant et al., 2004; Little
and Woollacott, 2015), perceived threat (Adkin et al., 2008;
Mochizuki et al., 2010), and predictability (Adkin et al., 2006,
2008; Mochizuki et al., 2008, 2010), we believe this is the
first study to demonstrate an association to between-subjects
differences in cognitive ability. Given that set shifting ability is
reflected in the cortical activity (100–200 ms) prior to the muscle
activity (200–300 ms), it is possible that the N1 reflects cortical
activity contributing to the subsequent antagonist activity, which
could be tested in future studies by modulating cortical activity
through therapeutic non-invasive brain stimulation (Taube et al.,
2006; Jacobs et al., 2009). For example, after the perturbation,
the participant may perceive a high threat or need for attention,
which is reflected in the cortical N1 (Quant et al., 2004; Adkin
et al., 2008; Mochizuki et al., 2010; Little and Woollacott,
2015), and subsequently engage a non-specific cocontraction
strategy that does not incorporate the directional context into the
behavior. Indeed, people report paying more attention to balance
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under more threatening conditions (Huffman et al., 2009) and
display greater stiffness of postural sway (Carpenter et al., 2001,
2004, 2006). Greater perceived threat or fear of falling is also
associated with agonist-antagonist cocontraction in both younger
and older adults (Okada et al., 2001; Carpenter et al., 2006).
Further, habituation of agonist-antagonist cocontraction with
practice in high threat conditions is associated with habituation
of the emotional response (Zaback et al., 2019), which may
be easier to modify than the abnormal involuntary behavior
observed at more severe stages of balance impairment (McKay
et al., 2021). We previously suggested that the cortical N1
could reflect compensatory cortical control based on larger
amplitudes in young adults with lower balance ability (Payne
and Ting, 2020b) and on trials with compensatory steps (Payne
and Ting, 2020a). This non-specific cocontraction could be
another way in which compensatory cortical control is engaged.
Although the supplementary motor area has direct connections
to motor neurons (Goldberg, 1985), potential connections
between the cortical N1 and subsequent muscle activation also
include indirect routes, such as through projections from the
supplementary motor area to the motor cortex or basal ganglia
(Goldberg, 1985). However, any causal links between the cortical
N1 and balance recovery behavior remain speculative until
tested by further studies, particularly through methods that
would disrupt the cortical activity, such as non-invasive brain
stimulation, or dual task interference, which reduces the N1
amplitude (Quant et al., 2004; Little and Woollacott, 2015)
and the late phase of the muscle activity (Rankin et al., 2000).
However, the cortical N1 could serve as a potential biomarker
for the development of a balance disorder without requiring
a direct relationship to the muscle activity on a within-trial
timescale. The cortical N1 has been frequently compared to
the error-related negativity (Payne et al., 2019b), which occurs
in response to mistakes in cognitive tasks. The error-related
negativity, measured in 6-year-olds, can predict who will develop
an anxiety disorder by 9 years old (Meyer et al., 2015), using a
reduced electrode setup and measurement at a single electrode.
As the N1 is in the early stages of validation as a between-
subjects measure, much more work is needed to determine
whether the N1 could predict the development of disorders on
longitudinal timescales.

Well-established changes in prefrontal cortical activation in
older adults may explain links between motor and cognitive
behavior and have been previously demonstrated as a potential
target for rehabilitation. As cognitive set shifting and the cortical
N1 response have previously been localized to distinct brain
areas, we can only speculate as to why they would be associated
in the present findings. Cognitive set shifting depends on the
dorsolateral prefrontal cortex (Zgaljardic et al., 2006; Ko et al.,
2008a,b; Leite et al., 2011, 2013, 2020; Luthi et al., 2014; Gerrits
et al., 2015; Tayeb and Lavidor, 2016; Imburgio and Orr, 2018),
and the cortical N1 has been localized to the supplementary
motor area (Marlin et al., 2014; Mierau et al., 2015), but
there are several potential explanations as to why cognitive set
shifting would be associated with the cortical N1 response despite
their distinct brain regions. First, older adults recruit prefrontal
cortical areas to a greater extent and more broadly than young

adults for the same tasks (Reuter-Lorenz and Cappell, 2008), and
lose functional segregation between different cortical areas (Chen
et al., 2011; Damoiseaux, 2017; Chong et al., 2019; Cassady et al.,
2020), which may result in coupled activation between cognitive
and motor cortical areas. Accordingly, older adults tend to recruit
prefrontal cortical areas broadly for balance and walking tasks
(Stuart et al., 2018; Nobrega-Sousa et al., 2020; St George et al.,
2021). However, the cortical N1 may not arise exclusively from
the supplementary motor area, as there is evidence to suggest that
multiple cortical sources synchronize in the theta frequency band
to contribute to the cortical N1 response even in young adults
(Peterson and Ferris, 2018, 2019). We speculate that increased
synchronization between prefrontal and motor cortical areas
during balance recovery with aging may explain associations
between cognitive function and balance control in older adults.
For example, we recently showed that functional connectivity in
the beta frequency band between motor and prefrontal cortical
areas during balance recovery in older adults is associated with
cognitive dual task interference in walking (Palmer et al., 2021).
A better understanding of the mechanisms linking balance and
cognitive function in aging could reveal new therapeutic targets
for rehabilitation and enable a more targeted exploration of the
effects of cognitive training on balance rehabilitation (Smith-Ray
et al., 2015; Hagovska and Olekszyova, 2016). For instance, it is
well established that non-invasive stimulation of the dorsolateral
prefrontal cortex can affect cognitive set shifting performance
(Ko et al., 2008a,b; Leite et al., 2011, 2013, 2020; Luthi et al.,
2014; Gerrits et al., 2015; Tayeb and Lavidor, 2016; Imburgio and
Orr, 2018), but similar stimulation protocols are rarely applied
to impact balance function despite links between cognitive set
shifting and balance function dysfunction (Herman et al., 2010;
Tangen et al., 2014; McKay et al., 2018) and evidence that
such stimulation can reduce cognitive dual task interference on
balance and walking behaviors (Manor et al., 2018).
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Supplementary Figure 1 | No significant associations were observed between
clinical balance ability and directional specificity of muscle activity.
Condition-averaged muscle activity is shown for (A) soleus and (B) tibialis anterior
muscles for example participants with higher or lower directional specificity
scores. Muscle activity evoked by forward movements of the floor (resulting in
backward leaning posture) is represented in magentas and activity evoked by
backward movements of the floor is represented in blues, with darker colors for
larger perturbations. Antagonist activity (i.e., soleus activity in forward
perturbations and tibialis anterior activity in backward perturbations) is shaded for
clarity. Vertical lines at 100 ms, 200 ms, and 300 ms mark the bounds of the time
bins of interest. The later (200–300 ms) time bin is shaded in all panels. Directional
specificity is plotted against miniBESTest scores for the (C) soleus muscle and (D)
tibialis anterior muscle in each perturbation magnitude for early (100–200 ms) and
late (200–300 ms) time bins.

Supplementary Figure 2 | Perturbation-evoked cortical N1 responses were not
associated with clinical balance ability. Cortical N1 response amplitudes are
plotted against miniBESTest scores in each of the perturbation conditions.
Forward movements of the floor (resulting in backward leaning posture) are
represented in magentas and backward movements of the floor are represented in
blues, with darker colors for larger perturbations.
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