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Abstract—Robotic assistive and rehabilitative devices for walking 
based on physical interactions at the hands have promise but we 
do not know how best to design them to improve how people walk.
Here, we validate the performance of a novel hand-contact robotic 
device capable of emulating a variety of physical interactions at 
the hands to alter human gait parameters. Slidey is a linear stage 
translating on a 5m track that is capable of high-fidelity current 
control, position control, and admittance control well within and 
beyond that needed to emulate human-human interactions at the 
hand during gait. We show proof-of-concept that novel pulsatile 
velocity profiles of the robotic handle can differentially alter step 
frequency and step length. The robotic emulator can therefore be 
used to identify and test controllers that could be implemented on 
mobile robotic walking aids in the future.
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I. INTRODUCTION

    Principles from physical human-human interaction (pHHI) 
have the potential to be applied to robotic controllers to make 
physical human-robot interactions (pHRI) more intuitive and 
seamless. However, no existing devices have been validated to 
have sufficient performance to emulate human-human hand 
interactions that affect walking. Evidence from pHHI show that 
human pairs intuitively alter walking behavior in response to 
physical hand interactions without explicit instructions, 
including synchronizing gait phase [1], [2], communicating 
walking transitions [3], and aiding balance during walking [4]. 
Devices designed for pHRI must be capable of emulating 
human hand and walking behavior to exploit principles from 
pHHI to aid walking.

   Controllers designed to explicitly alter human walking
through hand interactions have only begun to be explored in 
pHRI [5]–[8]. To date, instrumented passive walkers show that 
hand/arm forces are related to spatiotemporal gait parameters 
[9], [10], but such studies have not been conducted in motorized 
robotic walkers. Changes in a person’s step width have been 
observed when walking with a mobile robot that follows the 
human’s walking speed while providing light touch at the hand
in the vertical direction (< 5N, verified post-hoc) [7]. Mean 
walking speed and step length can be increased using a
constant anterior-posterior tensile force applied to a person's 
hand (similar to walking a dog) by a fixed-in-space robot during 
treadmill walking [5], [6] or a mobile robot during overground 
walking [8]. When a humanoid robot follows a human’s 
stepping via forces at the hand, gait speed increases when the 

robot admittance gain and arm stiffness increase [11]. 
Because each of the previous robotic devices interacting with 

humans at the hand were unique in physical design and 
employed distinct controllers, it remains unclear whether the 
particular hardware design, controller, or combination of the 
two caused the changes observed in gait. Hand-contact robotic 
walking aids have either employed some type of force control 
[5]–[8] or admittance control with only a damping term [11]. In 
particular, the fixed-in-space device [5], [6] required using a
self-paced treadmill with its own controller that may have also 
affected gait parameters.

Testing biologically-inspired human-robot controllers to
alter walking via hand interactions requires sufficient 
bandwidth to match frequencies found in human movement. 
Normal human walking has a kinematic bandwidth of 4-6 Hz
[12], and torques exerted at the hand for physical 
communication during seated human-human upper-limb  
interactions reach about 12hz [13]. Robot performance was not 
provided for the mobile robotic devices in [7], [8], and the 
mobile robot in [11] showed significant decrease in power at 
frequencies over ~3Hz. 
    Moreover, no existing device has demonstrated the ability to 
alter specific gait parameters in a systematic manner, an 
important function for a walking aid. During unaided human 
gait there is a constant relationship between step length and 
step frequency [14], [15], but the ability to flexibly adjust these
gait parameters independently is necessary for different 
walking contexts (e.g. walking on stepping stones). Gait 
parameters are also affected in motor pathologies, e.g. 
individuals with Parkinson’s disease take shorter steps at 
unimpaired step frequencies, and this motor deficit can be 
exacerbated by using a conventional cane or wheeled walker 
[16]. Although larger forces at the hand increase gait speed, 
these changes were also coupled to increases in step/stride 
length [5], [6], [8] and did not alter the step length-step 
frequency relationship.  Further, varying the robot’s admittance 
gain did not affect gait speed or step frequency in [11].
   Our goal was to build a versatile emulator to with the 
capability of testing a variety of controllers with the goal of 
altering humans gait parameters through physical interactions 
at the hands. We validated the performance of a robotic handle 
that slides on a linear track under current control (equivalent to 
closed-loop control of motor force), position control, and 
admittance control. We show proof-of-concept that novel
velocity profiles of the robotic handle can differentially alter 



gait parameters. The robotic emulator can therefore be used to 
identify and test controllers that could be implemented on and 
guide the design of mobile robotic walking aids in the future.

II. DEVICE DESIGN AND VALIDATION

A. Design criteria
    By using a device that moves on a fixed track rather than a
mobile robot, we use less of the device’s power capabilities for 
self-locomotion and have more power for emulating physical
interactions with the human. A prior study showed that humans 
prefer walking with a mobile humanoid robot with fewer 
degrees of freedom (i.e. very stiff arms and a compliant 
admittance-controlled base) [11], suggesting that a simple one-
degree-of-freedom device is sufficient to examine principles of 
physical interaction in human-robot partnered walking.

To emulate human movement, the robot’s bandwidth should 
be at least 6Hz for position control and up to 12Hz for force 
control based on previous studies examining gait kinematics 
[12] and human-human hand interactions [13]. Additionally, as
human cutaneous mechanoreceptors can sense frequencies up
to 1khz [17], robotic devices and controllers for human-robot 
interaction should avoid unintentional vibrations in this range.

B. Hardware
The hand-contact robotic device Slidey was developed to 

meet the design criteria above. A linear stage slides on a one-
degree-of-freedom track powered by a linear induction motor;
two handles are attached to the sensing face of a 6-axis force-
torque sensor (model: 9105-T-GAMMA SI-32.2.5, ATI 
Industrial Automation, NC, USA), which is in turn fixed to the 
linear stage (Fig. 1). The linear stage has a 5.34 m stroke 
(model: 2XBLDM-B04, H2W Technologies, Inc., CA, USA) 
driven by a servo drive (Xenus XSJ-230-10, Copley Controls, 
MA, USA). The position of the linear stage is measured by a 1-
um resolution linear encoder (LM10, Renishaw, Wotton-under-
Edge, England). The motor has a 6.6 N/Amp motor constant 
and a 166.6 N force output at 10% duty cycle. The servo drive 
is configured in current control mode that supports 4.43 Amp 
continuous and 10 Amp peak current, resulting in 
approximately 55.2 N continuous force and 110 N peak force. 

The user interface is designed to be ergonomic and versatile, 
allowing adjustability for different users and force and position 
information for different modes of use. The handles were 
custom-designed and 3D printed to mimic the shape and size of 
a doorknob. The location of each handle can be adjusted to
accommodate the different distances between arms for each
user. The handles can be mounted on either side of the device, 
allowing for forward walking in either direction, and one handle 
can be completed removed to test one-handed vs. bimanual 
hand interactions. The height of the handles can be adjusted to 
allow each user to maintain a comfortable arm posture of 
elbows bent at 90 degrees and wrists flat. 
    Multiple safety features are implemented via analog circuitry 
and digital controls. A “dead-man’s” switch is embedded in one 
handle and depressed by the user’s palm when holding the 
handle during normal operation. Letting go of the handle in 
shuts off power to the servo drive. Emergency stop buttons 

connected directly to the servo drive power are positioned at the 
main control computer and at the far end of the track. A 10 Amp 
fuse is installed in series with the servo drive power. A velocity 
limit of 9 m/s is implemented in the servo drive software.

C. Control architecture
The computer controlling Slidey runs Simulink Desktop 

Real-Time (SDRT) software (Mathworks, MA, USA) that 
commands the servo drive, which runs its own lower-level 
current controller. SDRT runs at 1khz and outputs an analog
voltage command via a 16-bit PCI DAQ board (PCIe6323, 
National Instruments, TX, USA) to the servo drive running at 
15khz, which converts the voltage signal to a current command
at a 1:1 ratio with 12-bit resolution. We chose to use current 
control instead of position control mode in the low-level 
controller as to avoid loss of position resolution over the long 
stroke of the linear motor. Given a track length of 5.34 m, 12-
bit resolution of the servo drive would result in a position 
command resolution of 1.2 mm, which we deemed insufficient 
for emulating smooth hand motions during walking. The servo 
drive acquires linear encoder data at 20 MHz.

The force/torque sensor streams data at 7 khz over Ethernet 
(Net F/T) to SDRT. The sensor has a resolution of 1/160 N in 
the direction of walking. Interaction force and encoder position 
are recorded at 1 khz in SDRT.
    Custom Simulink code was written to realize current,
position, and admittance control. Current control is 
implemented via current commands from SDRT to the servo 
drive (Fig. 2a). Closed-loop position control is implemented by
inputting an analog encoder signal to SDRT, calculating desired 
position, and outputting a current command to the servo drive 
(Fig. 2b). Admittance control is implemented by inputting both 
the analog encoder signal and the analog signal from the force 
sensor to SDRT, calculating desired position, and outputting a 
current command to the servo drive (Fig. 2c).

Fig. 1: Device components and communication pathways 



D. Performance validation

1) Current control
The parameters for the current controller (Fig. 2a) on the 

servo drive were tuned using the auto-tuning function in CME 
2 software (Copley Controls, MA, USA) to maximize 
smoothness of operation. The final tuning gains obtained were 
Cp = 61, Ci = 40. To characterize the frequency response with 
these gains, we input sinusoids with amplitude of 2 Amps and 
frequencies logarithmically scaled between 1-1024 Hz and 
calculated bandwidth from the resulting Bode plot (Fig. 3). The 
-3dB bandwidth achieved was between 512 and 1024 Hz.

2) Position control
Feedback gains for the closed-loop position controller (Fig.

2b) were manually tuned to result in smooth motion when 
commanding both a constant velocity and velocity pulses. The 
tuning gains used were Kp = 80 and Kd = 30. As position 
commands from the high-level controller are converted into
current commands at the low-level controller, and we already 
calculated the bandwidth of the current controller, we next 
calculated the bandwidth of our system for desired position 
inputs and actual position outputs. We input sinusoids with 
velocity amplitude of 0.2 m/s and frequencies up to 20hz and
calculated the 3dB bandwidth from the resulting Bode plot (Fig.
4). The bandwidth achieved was 5.84 Hz.

3) Admittance control
We validated our admittance controller by measuring actual 

(x) and desired (x_d) position while a person held on to the 
handles of the device and a) walked at preferred velocity and b) 
stood in place and exerted sinusoidal forces at fixed 
frequencies. We chose admittance values of m = 5 N/(m/s2) and 
b = 2.5 N/(m/s) based on anecdotal responses from the person 
about when they felt like the device did not affect their walking. 
Our human walking data showed a cross-correlation of 1.00
between actual and desired position with lag < 1ms (Fig. 5a).
As the human could only move their arms/hands at a maximum 
frequency ~2hz, our Bode plot includes frequencies up to this 
limit. The results show that we have adequate bandwidth for 
admittance control in a realistic range of human hand/arm 
motions, i.e. we achieved a gain of -0.69 dB at 2hz (Fig. 5b). 

III. HUMAN USER TESTING

A. Velocity profiles to alter a specific gait parameter
As both force and admittance control have been previously 

demonstrated to alter human walking, we focus on 
demonstrating the effects of a novel velocity controller on gait
parameters. Humans alter both step length and step frequency
in equal proportions over a range of speeds during unaided 
walking [14], [15], so we sought to dissociate changes in these 
two gait parameters using Slidey.

Fig. 2: Current controller Bode plot characterizing actual current input and
desired current output. The dashed red line indicates the -3dB bandwidth. 

Fig. 3: Control diagrams for a) force control (i_d = desired current, i = actual 
current, Cp = proportional gain, Ci = integral gain, k_m = motor constant = 
6.6 N/A, F_m = motor force, F_int = interaction force), b) position control, 
where Kp = proportional gain and Kd = derivative gain, x_d = desired 
position, x = actual position, and c) admittance control, where m = virtual 
mass and d = virtual damping. 

Fig. 4: Position controller Bode plot characterizing actual position output and
desired position input. The dashed red line indicates the -3dB bandwidth. 



We designed custom robot velocity profiles with velocity 
biases at different magnitudes and transient velocity pulses at 
different frequencies (Fig. 6a) implemented via position 
control. We hypothesized that the robot’s velocity bias (b) at 
the hand would affect average human walking speed (vH) while 
the robot velocity pulse frequency (fR) would affect average 
human step frequency (fH) (Fig. 6a, b). Given the relationship 
that average walking speed is the product of average step length
(L) and average step frequency (vH = L*fH), we varied the 
robot bias magnitude and pulse frequency to target changes in 
human gait speed, step frequency, and step length (Table 1).

The experiment had 3 conditions (Alter Gait Speed, Alter 
Step Frequency, and Alter Step Length) with 3 levels (below, 
at, and above preferred gait parameter value) per condition. 5
trials were performed for each level of each condition. Preferred
values for each gait parameter were obtained from unaided 
overground walking. 

Alter Gait Speed was the control condition, where velocity
bias magnitudes (without pulses) were set to desired gait speed 
(b = vd). This condition established preferred step frequency 
and step length changes for comparison to the pulsed 
conditions. 
    We then aimed to independently alter either step frequency 
or step length as walking speed varied. During Alter Step 
Frequency, we set pulse frequency to desired step frequency (fR 
= fd) based on maintaining a constant preferred step length 
(Lp), i.e.,  vH = Lp * fd. During Alter Step Length, we 
maintained preferred step frequency (fR = fp) but adjusted the 
ratio between the bias speed and the step frequency (b/fR) to 
achieve a desired step length (Ld).

TABLE I. CONDITIONS, LEVELS, AND PARAMETER VALUES

Condition
Parameter Level

Human Robot Below Preferred Above
Alter Gait 
Speed vd b 0.8*vp vp 1.2*vp

Alter Step 
Frequency

fd fR 0.8*fp fp 1.2*fp

v b 0.8*vp vp 1.2*vp

L b/fR Lp Lp Lp

Alter Step 
Length

Ld b/fR 0.7*Lp Lp 1.5*Lp

v b 0.8*vp vp 1.2*vp

f fR 1.2*fp fp 0.8*fp

B. Experiment setup
A young adult (age 27 years, height 1.85 m, weight 106 kg)

without neurological or physical impairments was recruited 
from Emory University (IRB00082414) to participate in user 
testing. Retroreflective markers were attached to the 
participant’s body according to the Lower Body Plug-in-Gait 
model with an additional marker at the left shoulder and 
recorded at 120 hz with a 10-camera motion capture system 
(Vicon Nexus, Oxford, UK). Gait parameters of forward speed, 
step frequency, and step length were calculated from motion 
capture data of shoulder and heel markers (Fig. 6b, c).

Because we wish to develop a robot that is intuitive to use, 
the participant was not given explicit instructions on how to 
walk with the robot, other than to maintain a similar starting 
posture at the beginning of each trial and to step with the left 
foot first. The participant was only instructed to hold the robot 
handles “like doorknobs,” maintain their arm posture (elbows 
bent at 90 degrees), stand with their weight mostly on one foot, 
and to “get ready to walk” after a series of auditory beeps at the 
beginning of each trial. To remove auditory and visual cues 
from the robot, the participant wore headphones playing white 
noise and was instructed to look straight ahead, not at the robot.

Fig. 4: Admittance control validation. a) Desired (x_d) and actual (x) robot
position while a person held the handles of the device and walked at preferred
speed under admittance control. b) Bode plot for desired and actual position 
during sinusoidal force inputs from human arm/hand motion.  

Fig. 6: a) Custom velocity profiles with velocity bias “b” and transient pulses at
frequency “fR.” were implemented in the robotic device to alter specific gait
parameters. b) Participant kinematics were recorded via motion capture while
they held the hand of the device and walked forwards. c) Human gait parameters
of walking speed (vH), step frequency (fH), and step length (L) were calculated
from motion capture data (LHS = left heelstrike, RHS = right heelstrike, t1 =
time of LHS, t2 = time of RHS).  



C. Data Analysis
We calculated gait parameters based on kinematics between 

the second and seventh heelstrike events of each trial, when gait 
approximated steady-state walking (from visual inspection of 
foot velocity) and excluded gait initiation and termination. All 
motion capture marker data was lowpass filtered at 30hz. Gait 
speed was calculated from the left shoulder marker’s 
displacement over the steady state walking period. Step 
frequency was calculated from time between consecutive
heelstrike events, averaged across all heelstrikes during the
steady state walking period per trial. Step length was calculated
as distance between heel markers at each heelstrike, averaged 
across all heelstrikes during the steady state walking period per 
trial. We normalized all gait parameters by preferred values 
obtained from walking without the robot. 

To test if the participant dissociated step frequency and 
length, we compared regression slopes. We performed linear 
regression between gait parameter (speed, step frequency, step
length) values and condition level (below, at, and above 
preferred). Then we tested if the slopes for the Alter Step 
Frequency and Alter Step Length conditions differed from the 
Alter Gait Speed control condition by examining the 95% CI’s 
of regression coefficients for all conditions.

Finally, we examined relationships between hand interaction 
forces and foot velocity to understand how hand interactions 
affect walking. We obtained the anterior-posterior velocity for 
each foot from differentiating heel marker positions and then
added the left and right velocities for combined foot velocity. 
We downsampled force data to match kinematic sampling
frequency. After detrending and lowpass filtering both foot 
velocity and force data at 30hz, we performed cross-correlation 
on the two signals during the steady state walking period and 
obtained the time lag at maximum correlation.

D. Results
Kinematic results show that gait parameters changed in the 

intended directions (Fig. 7). Changing robot velocity bias (b) 
altered human gait speed below and above the preferred speed 

(Fig. 7a). Step frequency and step length increased in a coupled 
manner (i.e. at similar rates) as gait speed increases during the 
Alter Gait Speed condition. Gait speeds for the pulse conditions
(Alter Step Frequency and Alter Step Length) were higher than 
the speeds for the control condition without pulses (Alter Gait 
Speed). In the Alter Step Frequency condition the robot pulse 
frequency at the hands increased step frequency (Fig. 7b, 
orange), while change in step length were attenuated (Fig. 7c, 
orange). Conversely, in the Alter Step Length condition, the 
changes in step frequency was attenuated (Fig. 7c, green) and 
step length was increased (Fig. 7c, green).

Slopes of regression lines mostly show intended dissociation 
between step frequency and step length in the pulse conditions. 
The slope was significantly greater for Alter Step Frequency
than the other 2 conditions, suggesting that step frequency is 
most strongly affected in the condition designed to target step 
frequency (Fig. 7a). For step length, the slope of the Alter Step 
Length condition was not significantly different from that of the 
Alter Gait Speed condition, but the slope of the Alter Step 
Frequency condition was significantly less than the Alter Gait 
Speed condition (Fig, 7b). This suggests that the Alter Step 
Length condition did not alter step length as strongly as we 
desired, but the Alter Step Frequency condition resulted in more 
constant step length than the Alter Gait Speed control condition.

We observed transient peaks in anterior-posterior hand force 
that correlated in timing with AP foot velocity. We limited our 
analysis to the Alter Step Frequency condition because it was
effective at altering gait parameters. Correlation between hand 
force and foot velocity was weakest when robot pulse 
frequency was at preferred step frequency (mean r = 0.14) and 
stronger when pulse frequency was below preferred step 
frequency (mean r = 0.36) or above preferred step frequency 
(mean r = 0.41). Hand force lagged foot motion slightly when 
hand pulse frequency was at preferred step frequency (mean lag 
= 0.04 s) Hand force lagged foot motion more when hand pulse 
frequency was below preferred step frequency (mean lag = 0.24 
s). Hand force led foot motion when hand pulse frequency was
above preferred step frequency (mean lag = -0.14 s).

Fig. 7: Gait parameter results. Colors denote condition (i.e. gait parameter to be altered). Dots denote individual trial data and lines denote regression to trial data.
Regression line slopes significantly different from that of the control condition (Alter Gait Speed) are denoted with an asterisk (*). a) Mean gait speed achieved
vs. desired gait speed, b) mean step frequency vs. desired step frequency, and c) mean step length vs. desired step length. 



IV. DISCUSSION

To our knowledge, this is the first pHRI robot capable of 
manipulating human hand interactions in a biologically-
relevant way to alter not just how fast people walk, but also how 
they achieve that behavior. The device has more than sufficient 
capability to reliable emulate forces (>500 Hz) and motions
(~6Hz) within the bandwidths observed in human walking and 
in human-human hand interactions. Thus, the device can be 
used to test a variety of pHRI and emulate pHHI paradigms. 

As proof of concept, we demonstrate the ability of the device 
to preferentially alter step frequency or step length with gait 
speed, a result not previously demonstrated in hand-contact
robotic walking aids. This effect was achieved without explicit 
instructions to the user, by changing the timing of transient 
velocity pulses to the hands during walking. The ability to 
systematically and intuitively alter gait parameters through 
hand forces provides promise for the use of hand-contact 
devices to improve walking quality, and not just speed. 

Relationships between hand interaction forces and gait 
kinematics may further reveal the causality between hand 
interactions and walking. Our initial data show that forces at the 
hand are nearly time-synchronized with foot motions when the 
robot pulses at preferred step frequency. Hand forces lag foot 
motions when robot pulse frequency is below preferred step 
frequency, and lead foot motions when pulse frequency is 
above preferred. However, it is unclear whether the forces are 
due to the user anticipating or reacting to the hand motions.
Further analysis may help elucidate mechanisms of how haptic 
information at the hands affects control of walking. 

Our new robot Slidey can be used to implement, discover, 
and test a variety of different controllers. Specifically, it can be 
used to emulate strategies of pHHI not previously explored in 
pHRI and explore novel controllers to target specific changes 
in gait parameters. Developing a high-fidelity robotic emulator
may be a critical step to better understand principles of pHRI 
and to provide design specification for mobile robotic walking 
aids to target different gait deficits.
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